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Abstract: The analysis of Hindmarsh-Rose (HR) neural model and its network dynamics under the 17 

influence of different stimulus inputs or network topologies are the leading research edge of the 18 

structural dynamics of complex networks, but the typical three-variable HR neural model has 19 

limitations in describing the complex non-linear features and precise behavior patterns of neuron. 20 

Based on an extended HR neural model, its firing patterns and bifurcation behavior with different 21 

stimulus are analysed, and how the newly introduced variable affect discharge modes has also been 22 

explored. A two-dimensional lattice is constructed to study the mechanism of spiral wave formation 23 

and breakup in the neural network, and to explore its network dynamics and synchronous behavior. 24 

The obtained results show that the extended HR neural model has more rich and stable firing properties, 25 

and it can be observed that there are multimodal phenomena with both spiking and bursting states 26 

simultaneously. If the network topology is changed, the formation and breakup of spiral waves can be 27 

observed, and the synchronization factor exhibits a monotonically decreasing relationship with the 28 

coupling strength and the control parameters of the newly introduced variable, indicating that the 29 

changing law of the synchronization properties in the two-dimensional network can reveal the 30 

transition mechanism of the chaotic and ordered states of the network. When HR neurons are in spiking 31 

state, the system is more prone to spiral waves, and the coupling strength range for spiral waves is 32 

wider. The above results provide valuable ideas to explore the modulation of network group behavior 33 

and provides useful information for the treatment of epilepsy. 34 

Keywords: Hindmarsh-Rose neural model; Topology; Spiral wave; Multimodality; Discharge 35 
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1. Introduction  37 

Scientific research has shown that the nervous system of an organism is mainly composed of 38 

neurons and glia, among which neurons are the basic units of the structure and function of the nervous 39 

system [1]. The establishment of neuron theory in 1909 provided strong supported for the development 40 

of neuroscience, and humans recognized that neurons are the most fundamental way to understand and 41 

explore the nervous system [2]. Due to the unique structure of neurons, they have a high degree of 42 

asymmetry, which enables them to complete specialized tasks in the process of information 43 

transmission and processing [3]. The electrical activity of the nervous system presents complexity, and 44 

different discharge modes are switched by applying appropriate external stimuli [4]. The connection 45 

of neurons in complex network helps to achieve different collective behaviors [5]. 46 

Pattern dynamics is an important branch in the field of nonlinear science, with the aim of 47 

exploring the basic laws of the formation and evolution of patterns that exist together among various 48 

systems in the objective world and have universal guiding significance [6]. Previous studies have 49 

shown that neurons in the cerebral cortex are mainly composed of excitatory pyramidal neurons and 50 

inhibitory Interneuron [7]. The two kinds of neurons modulate the individual electrical activity of 51 

neurons through different feedback circuits, so as to ensure the normal processing and coding of neural 52 

information [8]. So the transmission of neural signals in neural networks is also a research frontier and 53 

has practical significance [9]. For neural networks, external excitation in local regions can suppress 54 

spatiotemporal chaos and spiral waves in the network [10]. In addition to random boundary values, 55 

target waves or pulses can also be generated due to the heterogeneity and parameter diversity of local 56 

regions [11]. Some biological experiments have confirmed the presence of spiral waves in the cerebral 57 

cortex, which can regulate the collective behavior of neurons [12].  58 

Rich and diverse patterns can be observed in excitable media, and the selection of patterns in 59 

spatiotemporal systems is related to self-organizing behavior [13]. Khouhak et al. studied a 2-60 

dimensional network of interacting nephrons by considering a local linear coupling [14]. Weise et al. 61 

identified a mechanism for mechanical wave break in the heart muscle by using a reaction-diffusion-62 

mechanics model [15]. Jakubith et al. observed a large variety of spatiotemporal patterns depending 63 

on the applied conditions dynamics of reaction-diffusion systems [16]. Sandeep et al. demonstrated 64 

the excitation of spiral waves in the context of driven two-dimensional dusty plasma at particle level 65 

by using molecular-dynamics simulations [17]. He et al. investigated the spatiotemporal behaviour of 66 

the discrete neuron model in single- and two-layer network [18]. Rajeshkanna et al. introduced the 67 

fractional-order gene map model and investigated the system’s dynamic behaviors according to 68 

system parameters and derivative order [19]. Zhdanov et al. presented the spatiotemporal aspects of 69 

the interplay of cancer and the immune system [20]. The research on these spiral wave problems is 70 

widely found in various biological system and excitable media, and provides theoretical guidance and 71 

support for solving various problems [21]. 72 

The electrical activity of the nervous system presents complexity, and the formation and breakup 73 

of spiral waves can also be observed by changing external stimuli or network topology [22]. In many 74 

cases, spiral waves in the nervous system may be closely related to various diseases, so people attach 75 

great importance to spiral wave patterns in neural networks [23]. Shepelev et al. investigated 76 

Synchronization of wave structures in a heterogeneous multiplex network of 2D lattices with attractive 77 

and repulsive intra-layer coupling [24]. The dynamics of a two-dimensional ensemble of nonlocally 78 

coupled van der Pol oscillators is studied by Bukh [25] et al. The elimination of spiral waves is 79 
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numerically studied by Etémé et al. in a network of Hindmarsh-Rose neurons in presence of long-80 

range diffusive interactions and external frequency excitations in 2019 [26]. Nayak et al. carried out 81 

an extensive numerical study of the dynamics of spiral waves of electrical activation in the presence 82 

of periodic deformation in two-dimensional simulation domains [27]. Bukh et al. investigated 83 

numerically the spatio-temporal dynamics of a 2D lattice of coupled discrete-time systems with 84 

nonlocal interaction [28]. Wu et al. studied the pattern formation induced by gradient field coupling in 85 

bi-layer neuronal networks [29]. Yao et al. carried out the impacts of bounded noise and rewiring of 86 

network on the formation and instability of spiral waves in small-world network of Hodgkin-Huxley 87 

neurons through numerical simulations [30]. Wang et al. analysed the spatiotemporal patterns and 88 

collective dynamics of bi-layer coupled Izhikevich neural networks with multi-area channels [31]. Luo 89 

et al. proposed a new modified Fitzhugh-Nagumo model and studied the dynamic behaviors of spiral 90 

waves in cardiac tissue under fixed or periodic electromagnetic radiation [32]. 91 

Hindmarsh and Rose conducted extensive experiments on the visceral ganglia of pond snails, and 92 

they proposed a bi-variate neuronal model in experimental observations in 1982 [33]. In the following 93 

research, they found that this model could not explain the phenomenon of neuronal bursting discharge, 94 

and then they made modifications to the model and obtained the famous HR neuronal model [34]. Due 95 

to the rich discharge characteristics of the HR model, a large number of researchers have conducted 96 

extensive research on it [35]. Xu et al. investigated the of emergence of target wave and spiral wave in 97 

neuronal network induced by gradient coupling in HR neural model [36]. Ma et al. designed a forward 98 

feedback neuronal network in chain type and described the local kinetics for each node by HR neuron 99 

[37]. Torrealdea et al. deduced an energy function for a HR neuron model and used it to evaluate the 100 

energy consumption of the neuron during its signaling activity [38]. In our previous research work, we 101 

studied the modes transition and network synchronization in extended HR model driven by mutation 102 

of adaptation current under effects of electric field [46]. These studies have done a lot of meaningful 103 

work and provided very valuable guidance for computational neuroscience, but there is still a problem 104 

that has been ignored in previous studies. 105 

As we all know, the HR neural model can not only facilitate computation, but also generate most 106 

of the discharge behaviors exhibited by real biological neurons, such as quiescence, spike discharge, 107 

and burst discharge. However, the three-variable HR neuronal model has one clear drawback. When it 108 

comes to complex nonlinear problems of neuron or when describing the precise behavior patterns of 109 

neurons, the classic three variables HR neuronal model shows certain limitations. Considering the 110 

above reasons, the impact of newly introduced variables on their firing patterns and bifurcation have 111 

not been analyzed yet. Moreover, the spatiotemporal dynamics in the two-dimensional lattice 112 

constructed by extended HR neural model have not been reported, and it is also unclear how the control 113 

parameters in the newly introduced variable regulate the formation and breakup mechanism of spiral 114 

waves in the two-dimensional lattice network. Therefore, the above issues deserve careful exploration. 115 

In this paper, the firing patterns and bifurcation behavior of the extended HR neural model with 116 

different stimulus inputs are analysed firstly. Based on the characteristics of the control parameter in 117 

the newly introduced variable, the influence of the control parameter on the discharge modes and 118 

bifurcation are discussed, respectively. A two-dimensional lattice is constructed using random 119 

boundary functions and no-flow boundary conditions to explore the formation and breakup 120 

mechanisms of spiral waves in the neural network, and the mechanism of how the various parameters 121 

regulate the synchronization properties of networks is also explored. 122 

The rest of the present paper is organized as follows. In Section 2, the models and methods is 123 
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proposed. We give out an extended four-variable HR neuronal model and construct a two-dimensional 124 

neural network. Section 3, we analyze the firing patterns and bifurcation of the extended four-variable 125 

HR neuronal model. Formation and breakup of the spiral waves and the synchronization factor of the 126 

network are investigated. The conclusion is given in Section 4. 127 

2. Models and Methods 128 

2.1. Three-Variable Hindmarsh-Rose Neuronal Model 129 

The classical HR neuron model was proposed by Hindmarsh and Rose in 1982 [33]. This model 130 

was simplified to obtain a system of equations including 3 dimensions, and its main modeling objects 131 

were derived from snail neurons and thalamic neurons [39]. The three-variable HR neuronal model is 132 

described by the equations as follows [40]. 133 
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where x represents the membrane potential of the neuron, y represents the recovery fast variable, z is 135 

defined as the adaptive slow current, and Iext indicates the input stimulus [41]. Other parameters are 136 

selected as a = 1，b = 3，c = 1，r = 0.006 and s = 4. 137 

2.2. Extended Four-Variable Hindmarsh-Rose Neuronal Model 138 

With the deepening of scientific research, the classic three variable HR neural model has also 139 

shown certain flaws 41. For example, it shows certain limitations when it comes to the complex 140 

nonlinear problems of neurons or to describe the precise behavioral patterns of neurons 42. In order to 141 

solve the above problems, the researchers creatively proposed an improved extended HR neural model, 142 

by introducing a new variable w to describe the slow exchange of calcium ions between the cytoplasm 143 

and its storage medium, so as to solve the problem better 43. The extended four-variable HR neuronal 144 

model can be described by the following equations 44. 145 
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where d = 0.0002, e = 0.88, 1/k represents the control parameter related to the calcium ion exchange 147 

rate, and its commonly used value is k = 80 45. 148 
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2.3 Two-Dimensional Neural Network 149 

A two-dimensional N×N (N = 110) neural network is constructed, and all the neurons are arranged 150 

regularly in the way of lattice to form a square network in the two-dimensional plane 46. The no-flow 151 

boundary conditions are considered at the boundary positions of the two-dimensional neural network, 152 

and the random functions are applied on the network 47. The random boundary functions are separately 153 

denoted as x0=0.8αln(i)−0.2αln(j)−3, y0=−0.8αln(i)+0.2αln(j)−5, z0= 0.8αln(i)−0.2αln(j)−1, 154 

u0=−0.8αln(i)+0.2αln(j)−5, where α represents a random number between 0 and 1. The no-flow 155 

boundary condition assumes that the values inside and outside the boundary are equal, i. e., the values 156 

outside the boundary are set the same as the values within the boundary, so the inflow into the network 157 

is zero, therefore it is called no-flows boundary 55. Since the coupling current in the two-dimensional 158 

neural network is zero, the spiral wave production is directly related to the random boundary values 159 

48. The connectivity method for this network is represented as follows. 160 
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where the subscripts i and j represent the spatial position of the neurons, which can also be called nodes 162 

(i, j). 163 

     164 

Figure 1. (a)Schematic of neuron coupling connection; (b)Schematic of N×N two-dimensional 165 

lattice. 166 

As it can be seen from Figure 1, any neuron (i, j) is connected to other neurons in four positions, 167 

marked as upper (i−1, j), lower (i+1, j), left (i, j−1) and right (i, j+1), and the coupling strength between 168 

neurons is D 49. 169 

2.4 Synchronization Factor 170 

The mean-field theory shows that the synchronization factors are generally introduced as the 171 

statistics to describe the collective behavior and phase synchronization of the neurons when studying 172 

the synchronization dynamics of the collective behavior of a large number of neurons 53. The 173 
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synchronization factor is expressed by R, and its specific calculation method is as follows 51. 174 
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where N represents the number of neurons’ connected nodes in the neural network, and < > represents 176 

the statistical mean of a certain computed parameter 57. According to the existing experience, if the 177 

synchronization factor is small (R→0), the synchronization state of the system is poor. If the 178 

synchronization factor tends to 1 (R→1), the synchronization state of the system is good 50. 179 

3. Discussion and Analysis 180 

In order to study the discharge modes and bifurcation behavior of extended HR neuronal model 181 

under different external input conditions in detail, the Euler method was used to calculate the neuronal 182 

membrane potential, and the C++ software was used to build the neural network 错误!未找到引用183 

源。. The Origin software was used to simulate and quantitatively analyze the generated membrane 184 

potential, bifurcation diagram (ISI), spiral wave patterns and network synchronization 55. 185 

3.1 Firing patterns and Bifurcation 186 

Select appropriate parameters and set the time step as 0.001 to simulate and analyze the above 187 

equations 错误!未找到引用源。. When the intensity of external input stimulus is changed, the 188 

bifurcation of membrane potential of the HR and extended HR neuronal models are shown in Figures 189 

2(a) and 2(b), respectively. The bifurcation diagram is plotted by calculating the Inter-Spike 190 

Interval(ISI) of membrane potential 57.  191 

   192 

Figure 2. Bifurcation of membrane potential under different conditions. (a)ISI verse Iext of HR model; 193 

(b)ISI verse Iext of extended HR neural model; (c)ISI verse k of extended HR neural model.  194 

It can be seen from Figures 2(a) and 2(b) that when the intensity of external stimulation current 195 

increases, the firing pattern of neuronal model undergoes changes in quiescent state, bursting, spiking, 196 

and chaos states, etc. However, it is worth noting that, when the new variable w is introduced into the 197 

HR model to describe the slow exchange of calcium ions between the cytoplasm and its storage 198 

medium, the discharge patterns of the extended HR neuronal model become more diverse, especially 199 

when the current is relatively high. Figure 2(c) shows the bifurcation diagram of the extended HR 200 

neuronal model when the control parameter k changes, and it can be clearly seen that the ISI presents 201 
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a stepped shape. When the value of k is less than 10, there are always some smaller values in the time 202 

interval of membrane potential, which means there exists bursting states. As the value of k increases, 203 

the form of bursting changes, and the ISI also correspondingly increases, showing a stepwise upward 204 

trend. If the value of k is greater than 30, the neuron exhibits a spiking discharge pattern. From the 205 

above results, it can be concluded that both external current and control parameter k have significant 206 

effects on the firing modes of HR neural model. 207 

 208 

Figure 3. Membrane potential of extended HR neural model with different external stimulus intensities. 209 

With the increase of external stimulation current, one can sequentially observe firing modes such as 210 

spiking and period bursting, and the appearance of multimodal discharge can be observed. 211 

If the external current intensity is changed, the extended HR neuronal model also exhibits rich 212 

discharge patterns, as shown in Figure 3. Consistent with the ISI image in Figure 2(b), if the intensity 213 

of external stimulation is less than 1.4, the extended HR neural model is in quiescent state, which 214 

means that the membrane potential of the neuron oscillates attenuatedly under the threshold. During 215 

the process of increasing external stimulation current, spiking, period bursting, and fast spiking states 216 

can be observed in sequence. Specifically, when the external stimulus current intensity is 3.0, a 217 

multimodal presence with both spiking and bursting can also be observed, and the bursting also has 218 

various forms. 219 

In order to understand the influence of the control parameter k of the newly introduced variable 220 

w on HR neuronal model, the time series of membrane potential under different k values are plotted in 221 

Figure 4. It can be seen clearly from Figure 4 that if the value of k is relatively small, the firing patterns 222 

of extended HR neuronal model exhibit period-2 bursting state. Increasing the value of k to 5 can 223 

observe a slight increase in the interval between peaks. Continuing to increase the value of k, it can be 224 

observed that both spiking and bursting can be observed simultaneously, which is a multimodal 225 

phenomenon. For the classic three-variable HR neuronal model, multimodal existence cannot be 226 

observed in this case. 227 
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 228 

Figure 4. Membrane potential of extended HR neural model with different parameter k. The control 229 

parameter k has a significant impact on the neuronal discharge modes, and an increase in k leads to the 230 

loss of bursting state and ultimately evolve into spiking state, one can observe multimodal phenomenon 231 

when the appropriate k value is selected. 232 

 233 

Figure 5. Time series of variables of extended HR neural model. The newly introduced variable w is 234 

used to describe the slow exchange of calcium ions between the cytoplasm and its storage medium, it 235 

exhibits a trend of oscillation attenuation over time. 236 

In order to further investigate the impact of the newly introduced variable (i.e., the control 237 

parameter k) on the firing patterns of the extended HR neural model, the relationship between the four 238 

variables is plotted in Figure 5. It can be clearly seen from Figure 5 that the extended HR neural model 239 

is in spiking state, and the rate of change of variable y is very fast, assuming the role of rapid recovery 240 

of current. The variation of variable z is relatively slow, playing a role in slow recovery current. The 241 

newly introduced variable w is used to describe the slow exchange of calcium ions between the 242 

cytoplasm and its storage medium, it exhibits a trend of oscillation attenuation over time. 243 
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 244 

Figure 6. Phase diagram of variables of extended HR neural model. (a)-(f)：Iext = 1.3, 1.4, 2.0, 3.0, 245 

5.0, 10.0. As the external current intensity increases, spiking, period-2 bursting, and period-4 bursting 246 

can be observed in sequence. Relatively high current intensity can lead to fast spiking patterns. 247 

The phase diagram of variables x, y and z of extended HR neural model is plotted in Figure 6 for 248 

the sake of further exploring the characteristics of its firing patterns. When the intensity of external 249 

stimulation current is less than 1.4, the membrane potential oscillates under the threshold, and the 250 

amplitude of oscillation gradually decreases. Therefore, the phase diagram we see is an unclosed curve, 251 

presenting a continuous circular shape with gradually decreasing radius. In the following figures (for 252 

Iext = 1.4, 2.0 and 3.0), spiking, period-2 bursting, and period-4 bursting can be observed in sequence. 253 

By further increasing the intensity of external stimulation current, the discharge mode evolves into 254 

spiking, and as the current intensity increases, the firing frequency increases. 255 

3.2 Formation and breakup of the spiral waves 256 

As is well known, spiral waves have been observed in both excitable and general media. In order 257 

to understand the mechanism how the spiral waves are generated in extended HR neuronal system, 258 

Figure 7 shows the development of spiral waves induced by random values of boundary at different 259 

external stimulus intensities with coupling strength D = 0.5. The observation time is scheduled to be 260 

20000 unit times, the observed spiral wave pattern is basically consistent with what is expected. If the 261 

external stimulation current intensity is less than 1.3, most of the neurons are in  resting states. Due 262 

to the induced effect of random boundaries, only a few neurons appear membrane potential oscillation 263 

on the boundary of the two-dimensional network. 264 

Continuing to increase the external stimulus intensities, it can be observed that the change in 265 

external stimulus intensities has a significant modulation effect on the induction of spiral waves, 266 

resulting in multiple sets of spiral waves. The mechanism is that the induced traveling waves will be 267 

interrupted at the boundary during propagation due to the differences in the strength of random 268 

boundary effects in adjacent different regions, thereby inducing new spiral waves. Figures 7(a)-(d) tell 269 

us the potential mechanism of how spiral waves are generated, that is, the forward propagating 270 

traveling waves originate from the four boundaries of a two-dimensional network, and then collide in 271 

the central region of the network, allowing for the observation of rich spiral wave patterns. In Figure 272 
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7(d), the two-dimensional network is occupied by spiral waves, with the centers of the four sets of 273 

spiral waves approaching the four corners of the two-dimensional network, and the center of the 274 

network becoming the squeezed area.  275 

As the external stimulus intensities increases, this interaction further increases, and the spiral 276 

wave pairs and spiral wave seeds in the network disappear, as shown in Figure 7(e). However, 277 

symmetric spiral wave pairs originating from four angles of the network were observed in Figure 7(f), 278 

and then they disappear again if the external stimulation current intensity are 2.0, 2.1, and 2.2, 279 

respectively. In Figure 7(j), it can be observed that two colliding spiral waves are entangled together. 280 

The main reason is that increasing the external stimulus intensities increases the number of peaks in 281 

neuronal bursting discharge, thickens the spiral wave arm, and increases the size of spiral waves, 282 

finally the number is correspondingly smaller. In this way, individual spiral waves can be seen in the 283 

two-dimensional network. So it can be concluded that selecting the appropriate external stimulus 284 

intensities can result in a single spiral wave, and usually multiple spiral waves and spiral wave pairs 285 

interact to cause regular or irregular patterns to appear repeatedly in the system. 286 

 287 
Figure 7. Development of spiral wave induced by random values of boundary at different external 288 

stimulus intensities with D = 0.5 at t = 20000 time units. (a)-(l): Iext = 1.3, 1.5, 1.6, 1.8, 1.9, 2.0, 2.1, 289 

2.2, 2.3, 2.4, 2.5, 2.8. The forward propagating traveling waves originate from the four boundaries of 290 

a two-dimensional lattice, and then collide in the central region of the network, allowing for the 291 

observation of rich spiral wave patterns. 292 

As shown in Figure 8, the formation and breakup of spiral waves can also be observed when the 293 

coupling strength between adjacent neurons changes. Here, the stimulus current is chosen as Iext =1.3 294 

under the threshold and the system rely on the interaction of random boundaries to excite spiral waves. 295 

When the coupling strength is selected as D = 0.1, a large number of neurons are in quiescent state, 296 

and the entire network has neither spiral wave seeds nor spiral waves. As the coupling strength 297 

increases, spiral wave pairs and double-armed spiral wave seeds begin to appear in the two-298 

dimensional network. However, no matter how the coupling strength changes, a separate spiral wave 299 

pattern cannot be observed in the network. The mechanism behind this phenomenon is related to the 300 

firing patterns of neurons. That is, if the number of spiking discharges in neurons is small, the wave 301 

arm of the spiral wave is thinner, so the size of the spiral wave is small while the number is large, and 302 

there is no single spiral wave in the system. These results indicate that the probability of a single spiral 303 

wave appearing in the system is relatively low, and the probability of a small spiral wave appearing is 304 
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relatively high. These results are consistent with the experimental observations. 305 

 306 
Figure 8. The development of spiral wave induced by random values of boundary at different coupling 307 

intensities D with Iext = 1.3 at t = 20000 time units. (a)-(i) D = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 308 

1.0, 1.1, 1.2. By changing the coupling strength between neurons, neurons below the threshold can be 309 

stimulated to start firing, thereby inducing the generation of spiral waves. 310 

 311 

Figure 9. Development of spiral wave induced by random values of boundary at different coupling 312 

intensities D with Iext = 2.8 at t = 20000 time units. (a)-(i) D = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1. 313 

No matter how the coupling strength is changed, only circular or annular waves appear, and the wave 314 

heads of these circular waves are also constantly changing. 315 

When a larger stimulus current Iext = 2.8 is selected, one can observe completely different results, 316 

as shown in Figure 9. It is surprised to find that only chaotic states and single spiral waves appear in 317 

case of I = 2.8 no matter how the coupling strength is changed, and spiral wave seeds cannot be observed. 318 

If strictly speaking, these spatiotemporal patterns cannot be called spiral waves, a more suitable term 319 

would be circular or annular waves. Due to the interaction of random boundaries, the system exhibits 320 
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planar waves, irregular curved waves, and other patterns. However, this circular wave is unstable and 321 

can vary with time and random boundaries. Previous studies have shown that when neurons are in 322 

spiking state, the system is more prone to spiral waves, and the coupling strength range for spiral waves 323 

is wider. When neurons are in period-2 bursting or other states, the system can only generate spiral 324 

waves when the initial phase distribution of neurons is relatively uniform. 325 

The influence of the change in control parameter k on the spiral wave in the two-dimensional 326 

network is also worth studying, as shown in Figure 10. As 1/k represents the parameter related to the 327 

calcium ion exchange rate, therefore it affects the fast variable y by changing the newly introduced 328 

variable w, and ultimately regulates the membrane potential of neuron. Under the selected parameter 329 

conditions, the change in the value of k has a certain impact on the formation of spiral waves in two-330 

dimensional networks, but this effect is relatively limited. When the value of k is greater than 60, 331 

obvious spiral wave arms can be observed in the four corners of the two-dimensional lattice, and the 332 

direction of rotation of its wave head is also changing. In all cases, the lattice can only generate 333 

wavelets, ultimately forming a square wave propagating towards the center, known as an anti-target 334 

wave or circular waves. It can be inferred that the neurons are in period-2 bursting state at this time 335 

from this phenomenon. 336 

 337 

Figure 10. Development of spiral wave induced by random values of boundary at different control 338 

parameter k with D = 0.5, Iext = 1.9 at t = 20000 time units. (a)-(h) k = 10, 20, 30, 50, 55, 60, 90, 100. 339 

The change in the value of control parameter k has a certain impact on the formation of spiral waves 340 

in two-dimensional networks, and if the value of control parameter k is greater than 60, the 341 

spatiotemporal pattern of the system does not change much. 342 

3.3 Synchronization factor of the network 343 

In order to detect the collective behavior of neurons in the two-dimensional network, the 344 

synchronization factor R are calculated in Figures 11-13. As is known to all that the synchronization 345 

factor of the network in a uniform state is relatively high. If the network presents an ordered state, the 346 

synchronization factor is small. The distribution of synchronization factors can effectively distinguish 347 

the generation types of different target waves.  348 

It can be clearly observed that as the control parameter k and coupling intensity D increase, the 349 

synchronization factor R shows a monotonic decreasing trend, suggesting that relatively smaller values 350 

of k and D correspond to larger synchronization factors. Although both Figures 11 and 12 are all 351 

monotonically decreasing curves, there are still differences if compare both of them. If the value of k 352 
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is greater than 60, it has almost no impact on the synchronization factor, which can also be concluded 353 

in Figure 10. When the coupling strength D is greater than 0.2, it can be seen that increasing the 354 

coupling strength does not affect the synchronization factor R, and the spiral wave pattern changes in 355 

the system are not significant, as shown in Figure 12. 356 

 357 

Figure 11. Synchronization factor R varies with different control parameter k. Synchronization factor 358 

varies with control parameter shows monotonically decreasing curve. 359 

The influence of external stimulus intensity on synchronization factors has characteristics similar 360 

to multiple resonances. It can be intuitively seen that as the intensity of external stimulation current 361 

increases, the synchronization factor R gradually decreases first, and then R drops to 0 at Iext = 1.3. 362 

Subsequently, the synchronization factor R value shows fluctuating changes, and three maximum 363 

values can be observed. These conclusions are basically consistent with Figure 7, Iext = 1.3 is a critical 364 

point for the system to undergo phase transition, which determines whether the neuron is in quiescent 365 

or discharging state.  366 

 367 

Figure 12. Synchronization factor R varies with coupling intensity D. Synchronization factor varies 368 

with coupling intensity shows monotonically decreasing curve. 369 
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 370 

Figure 13. Synchronization factor R varies with external stimulus intensity Iext. As the intensity of 371 

external stimulation current increases, the synchronization factor R shows fluctuating changes.  372 

4. Conclusions 373 

Considering the limitations of typical three-variable HR neural model in describing the complex 374 

nonlinear characteristics and precise behavioral patterns, a new variable is introduced into the classic 375 

HR neural model to analyze the discharge characteristics and bifurcation behavior of the modified HR 376 

model. The influence of the control parameter of the new variable on the extended HR neuronal 377 

membrane potential is explored, and the evolutionary relationship between the new variable and other 378 

variables are investigated as well. It is found that the discharge characteristics of the system are more 379 

diverse due to the newly introduced variable, and the appearance of multimodality can be observed. 380 

The spatiotemporal dynamics of two-dimensional lattice was also explored by using the induction 381 

of random boundary functions, and the formation and breakup mechanisms of spiral waves in the two-382 

dimensional network were explored. At the same time, the synchronization characteristics of the 383 

network were also analyzed by calculating the synchronization factor. It is found that if the number of 384 

spikes in neuronal bursting is small, the wave arm of the spiral wave is thinner, resulting in a smaller 385 

size and larger number of spiral waves, and there is no single spiral wave in the lattice. If the number 386 

of peaks in neuronal bursting increases, the spiral wave arm becomes thicker, and the size of the spiral 387 

wave in the lattice becomes larger and the number correspondingly decreases. It is concluded that the 388 

synchronization factor R show a monotonic decreasing trend with the increasing of the control 389 

parameter k and coupling intensity D. 390 

The above results are helpful in understanding how spiral waves spontaneously form in the 391 

cerebral cortex, especially in understanding the mechanism of epilepsy, as epilepsy is a functional 392 

brain disorder caused by the synchronization of a large number of neurons. These results can answer 393 

how synchronous oscillations are generated, and the formation mechanism of oscillatory death of a 394 

large number of neurons also provides useful information for the treatment of epilepsy. 395 
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