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Abstract: To efficiently utilize subsidy strategies for optimizing multi-airport route networks and 

promoting collaborative development among multiple airports, this study delves into the tripartite 

strategic interactions among passengers, airlines, and airports. A dual-layer game-theoretic model is 

constructed to optimize subsidy strategies, facilitating a synergistic alignment between multi-airport 

positioning and route networks. In the upper-layer game-theoretic model, Fermi rules are employed to 

analyze the interplay between pricing strategies of distinct airline brands and passenger travel 

preferences, aiding in determining optimal pricing strategies for airlines. The lower-layer game-

theoretic model introduces an asymmetric stochastic best response equilibrium (QRE) model, drawing 

insights from optimal airline pricing and the impact of airport subsidies on airline route adjustments to 

formulate effective multi-airport subsidy strategies. The results reveal that: (i) Airline revenues display 

varying peaks based on travel distances, with optimal fare discount intervals clustering between 0.6 

and 0.9, contingent upon travel distances and passenger rationality; (ii) Dynamic monopolistic 

intervals and inefficient ranges characterize airport subsidy strategies due to diverse competitive 

strategies employed by rivals; (iii) Targeted airport subsidy strategies can enhance inter-airport route 

coordination in alignment with their functional positioning. This research provides decision-making 

insights into collaborative airport group development, encompassing airport subsidy strategies and 

considerations for airline pricing. 

Keywords: air transportation; airport cluster; route network; subsidy strategy; evolutionary game 

 



2 

Mathematical Biosciences and Engineering  Volume x, Issue x, 1-X Page. 

1. Introduction and Literature review 

With the expansion of economies within urban agglomerations and the ongoing trend towards 

integrated development, the proliferation of airports in regional areas has been a consistent 

phenomenon. This has led to the emergence of scenarios characterized by "one city, multiple airports," 

consequently forming regional airport clusters. These clusters exhibit a shared allocation of spatial 

resources among their constituent airports, resulting in overlapping catchment areas and intense 

homogeneous competition in airport operations. However, this competitive environment presents 

challenges for optimizing route networks and fails to fully capitalize on the operational potential of 

individual airports. As a solution, a collaborative approach among airports becomes imperative to 

enhance passenger travel services. However, the existing deficiencies in airport collaboration largely 

stem from the inadequate synchronization of route networks. The core issue lies in enabling airlines to 

optimize route networks based on the functional positioning of airports, thereby transcending the zero-

sum mindset. In light of this, the present study aims to investigate the role of airport subsidies in 

achieving harmonized route networks among airports. The goal is to scientifically devise subsidy 

strategies that ensure minimal costs in achieving optimal route adjustments, thereby fostering the 

efficient collaborative development of airports within airport clusters. 

Both domestic and international scholars have conducted extensive research on the evolution of 

route networks within airport clusters, primarily focusing on the following three dimensions. Firstly, 

from the perspective of airlines, scholars have analyzed pricing strategies, market competition, and the 

evolution of route networks. For instance, Min et al. [1] constructed a model of passenger travel 

preferences to examine the competitive dynamics between high-speed rail and air transport in terms of 

acquiring market share. Their study also includes case studies for illustration. Yusuke et al. [2] 

formulated a revenue model for airline route selection and investigated how the competition between 

multiple airports for charging impacts airline route network decisions. Dobruszkes et al. [3] delved 

into the evolution patterns of airline choices in relation to airports of different tiers, drawing insights 

from the operational practices of airlines in the United States and Europe. Moreover, Zhou et al. [4] 

explored the influence of various combinations of route networks on airline pricing strategies, devising 

corresponding pricing algorithms. Peng et al. [5] established an evaluation index system to analyze the 

network effects of airline alliances formed in highly competitive environments. Their study focuses on 

examining how alliances impact airlines' strategic decisions. Additionally, Luo et al. [6] employed 

game theory to construct a competition and cooperation model between high-speed rail and civil 

aviation, analyzing their strategies within a win-win framework. Chandra et al. [7] reevaluated the 

impact of competition on price discrimination, highlighting varying effects on price differences based 

on consumer traits. Empirical findings underscored the role of consumer heterogeneity in reconciling 

conflicting research outcomes. 

Furthermore, Silva et al. [8] integrated network analysis and econometric techniques to explore 

the relationship between network topology, competition dynamics, and ticket pricing in the context of 

air transportation, utilizing evidence from Brazil. Their research sheds light on the intricate interplay 

between network structure and pricing strategies. Suzuki et al. [9] conducted empirical data analysis 

to examine the influence of airfare variations and convenient ground transportation options on 

passenger choices among multiple airports within a multi-airport system. Their findings provide 

valuable insights for airlines seeking to devise optimal ticket pricing strategies. Nigel et al. [10] 

conducted a comprehensive investigation into how route development impacts airport performance, 

drawing on a survey of 124 global airports. Their research revealed that larger, private, and European 
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airports exhibit heightened route development activity, thereby enhancing overall performance. The 

study also highlights the positive influence of market growth on performance while noting the adverse 

impact of airport constraints. Moreover, the research underscores that business environment factors do 

not significantly alter the relationship between route development and performance. In sum, the 

existing body of research underscores the significance of cooperative strategies among airports to 

optimize route networks and enhance operational efficiency within airport clusters. 

Secondly, Analyzing Route Adjustment Impacts from the Perspective of Passenger Travel 

Choices. Kim et al. [11] conducted an examination of the "escape" phenomenon wherein passengers 

shift from small and medium-sized airports to larger ones, drawing from fifteen years of data from the 

US air transportation industry. Liao et al. [12] developed an evaluation model grounded in operational 

data to assess the degree of overlap within airport group route networks. Their study delved into the 

competition index and substitutability between airports within an airport cluster, considering passenger 

needs as a crucial factor. Their findings serve as a decision-making foundation for the coordinated 

development of airports. Bian Qian et al. [13] employed game theory to dissect the competition 

dynamics between high-speed rail and aviation in medium-distance transportation. They employed 

reverse induction to derive optimal game strategies, providing valuable insights into strategic decision-

making. Colladon et al. [14] harnessed social network and semantic analysis of TripAdvisor forums 

spanning a decade across seven European capitals. By incorporating variables like forum language 

complexity and communication network centralization, they enhanced predictive models. This 

augmentation led to improved accuracy in forecasting international airport arrivals. Grosche et al. [15] 

introduced two gravity models designed to estimate air passenger volume between city-pairs, 

encompassing economic and geographical factors. These models prove useful for scenarios lacking 

established air service or accessible transportation metrics, demonstrating accuracy through calibration 

with booking data from Germany and 28 European countries. Usami et al. [16] conducted empirical 

research into airport choice and passenger movement on international flights originating from various 

local Japanese cities, specifically Narita and Haneda Airports. Leveraging microdata from Japan's 

Ministry of Land, Infrastructure, Transport, and Tourism in 2010, the study underscores the 

significance of flight connectivity in airport selection. Haneda's appeal in attracting passengers, 

especially for business purposes, is highlighted. Ishii et al. [17] delved into how air travel consumers 

departing from multi-airport regions balance attributes of both airports and airlines. This trade-off was 

empirically explored through a weighted conditional logit model of airport-airline choice, utilizing 

survey data on departing travelers. Choi et al. [18] investigated the factors influencing air passengers' 

selection of transfer airports between Southeast Asia and North America. Using a discrete choice 

model and a dataset comprising 78 city-pairs, the study unveiled the substantial impact of airport 

characteristics such as minimum connection time and service quality, alongside conventional factors 

like airfares and travel time. Rafael et al. [19] introduced an Econometric Dynamic Model (EDM) to 

predict passenger demand and applied it to address the Airline Airport Hub (AAH) location problem. 

Gao et al. [20] underscored the critical nature of accurately estimating airport catchment areas for well-

informed decision-making. Focusing on Indiana, their study employed a cost-based model to assess 

traffic leakage from Indianapolis International Airport (IND) to hub airports in Illinois. The findings 

underscore the sensitivity of catchment areas to the attributes of nearby airports and travel-related 

factors. In summary, this dimension of research investigates the intricate dynamics of passenger travel 

choices in response to route adjustments. Scholars in this field have provided insights into diverse 

aspects of passenger behavior, ranging from preference shifts between airports to the impact of various 
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attributes on airport and airline selection. These studies collectively contribute to a more 

comprehensive understanding of the factors influencing passenger travel choices within the context of 

evolving airport networks. 

Thirdly, analyzing the behavior selection strategies of airports and airlines from the perspective 

of mutual influence. Yang et al. [21] devised a preference model that integrates both airport and route 

selection, culminating in a two-dimensional strategy map. This map serves as a foundation for 

formulating pricing strategies for both airports and airlines. Nobuaki et al. [22] constructed a system 

dynamics model to assess the survival dynamics of feeder airports. Their study adopted an ecosystem 

perspective to analyze policies' impacts on airlines and passengers, subsequently formulating optimal 

strategies. Hou et al. [23] examined the influence of subsidies from larger airports on route resumption 

at smaller airports, aiming to restore routes during epidemic situations. Xu Aiqing et al. [24] employed 

a Multi-Logit model to dissect the effects of government route subsidies on different airlines' market 

shares in multi-airport competition scenarios. Chen Xin et al. [25] harnessed game theory and reverse 

induction to delve into the interactions among airports, airlines, and passengers. Their study analyzed 

the impact of this game on the structure of the route network. Bezerra et al. [26] employed partial least 

squares–structural equation modeling to uncover factors influencing passenger loyalty to a specific 

airport within a multi-airport region. Yirgu et al. [27] investigated passenger leakage between various 

airports in Wisconsin and Michigan, utilizing proximity and hierarchical logit models. Their analysis 

considered the influence of airport distance and service levels on passenger leakage. Antunes et al. [28] 

examined determinants of air connectivity in European regions, accounting for spatial effects, regional 

attributes, and airline business models. Their spatial econometric model, based on data from 284 

European regions, revealed significant spatial effects and highlighted the positive impact of low-cost 

carriers on air connectivity, particularly in remote areas. Basso et al. [29] conducted a comparative 

investigation of two airport pricing methods: the traditional approach (charges and congestion) and the 

vertical-structure approach (airline oligopoly). Their findings underscored the suitability of the 

traditional approach for airlines lacking market power, while favoring the vertical-structure approach 

for addressing strategic airport pricing within contexts of market power. Richard et al. [30] explored 

equilibria of extensive form games through econometric models for quantal choice. They introduced 

an agent quantal response equilibrium (AQRE) based on the quantal-choice model, which challenged 

the invariance principle. The logit-AQRE successfully predicted experimental behavior in signaling 

game experiments, providing insights that challenge previous explanations. 

In summary, existing scholarly investigations primarily focus on diverse facets of airport 

operations, airline strategic development, passenger travel behaviors, and the intricate interactions 

among these elements. While historical data and static models have yielded commendable progress, 

they exhibit limitations in addressing the dynamic nature of aviation dynamics. Notably, research on 

route network optimization tends to prioritize airlines' profitability, potentially overlooking the 

importance of aligning route expansions with the contextual functional orientation of airport clusters. 

Additionally, while passenger decisions influenced by fare differences are extensively studied, other 

crucial factors such as travel habits and brand loyalty are often overshadowed. Furthermore, the 

integration of experiential insights into passenger decision-making paradigms during route selection 

remains underexplored. On the topic of airport subsidy strategies, current research mainly quantifies 

airline revenue within predefined strategic frameworks, neglecting the nuanced influence of 

competitor strategies on airlines' dynamic decision-making. Additionally, there's a gap in analyzing 

how asymmetric information affects the effectiveness of airline competition in the context of airport 
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subsidy effects. Further research is warranted to address these limitations and offer a more 

comprehensive understanding of the multifaceted interactions within the aviation landscape. 

To address this concern, this study adopts a perspective that centers on the synergistic 

development stemming from the intricate interplay of routes within an airport cluster. The investigation 

focuses on the process where major airports divest non-core routes. To accomplish this, a 

comprehensive evolutionary game model is constructed, encompassing variables such as passenger 

travel choices, airline pricing, route selection, and airport subsidy strategies. Acknowledging the 

diverse decision behaviors exhibited by passengers, airlines, and airports, the study introduces a dual-

layer evolutionary game model to enhance methodological precision. The upper-layer model employs 

Fermi rules to compute passenger choice probabilities across various levels of airline ticket price 

discounts. By evaluating airline revenues corresponding to different choice probabilities, optimal fare 

discounts and passenger choice probabilities are determined and fed into the lower-layer model. In this 

lower-layer model, the Quantal Response Equilibrium (QRE) model is employed to effectively 

consider the impact of competition on the effectiveness of airport subsidy strategies, particularly under 

conditions of asymmetric information. Consequently, this approach enables the identification of 

optimal airport subsidy strategies and informed airline route selections. The upper-layer model is 

designed to optimize airlines' exploitation of market potential when introducing new routes, ultimately 

maximizing passenger benefits. On the other hand, the lower-layer model systematically examines 

how subsidy strategies influence airline route adjustments, ensuring a methodologically rigorous 

analysis. 

The subsequent sections of this paper are structured as follows: Section 2, Section 3 and Section 

4 introduces the proposed model in detail. Section 5 introduced the simulation processes in detail. 

Sections 6elaborate on the results derived from the application of the proposed model. Lastly, Section 

7 succinctly summarizes the research's key findings and conclusions. 

2. Materials and methods 

2.1. Problem description 

The emergence of regional airport clusters highlights the critical importance of harmonious route 

operations among airports to enhance the overall operational efficiency of these clusters. Within these 

clusters, airports can be classified into various types based on their coordinated development strategies, 

encompassing international hub airports, domestic hub airports, and regional airports. As these airport 

categories evolve, international hub airports often grapple with resource constraints, necessitating the 

divestment of routes that deviate from their designated roles. On the other hand, regional airports 

within the cluster, benefiting from relatively abundant resources, can accommodate the reassignment 

of these routes. In cases where flights converge at the same destination airport, airlines have the 

flexibility to depart from any airport within the regional cluster. This orchestrated development of 

regional airports involves the collaborative optimization of route networks by redistributing and 

accommodating routes in alignment with their functional roles. Nevertheless, the establishment of 

route networks is shaped by market dynamics, demanding the implementation of subsidy policies to 

guide airlines in optimizing these networks. 
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Figure 1. Optimization diagram of airline network between airports 

As depicted in Figure 1, it becomes evident that formulating subsidy strategies for airports without 

considering their synergistic functional roles within the airport cluster can lead airlines to make 

incorrect route selections due to their interests and developmental needs. For instance, divergent airport 

subsidy strategies might cause airlines to shift routes from international hub airports to regional 

airports, even when such routes do not align with the functional positioning of those regional airports 

themselves. As a result, a complementary route network, built upon the foundation of functional roles 

among airports, may not materialize. This underscores the strategic interplay between airlines and 

airports regarding route adjustments. Coordinated airport subsidy strategies can effectively incentivize 

airlines to select routes that correspond to their functional roles within the airport cluster, all while 

incurring relatively minor subsidy costs. 

Throughout this process, airlines decide whether to transfer routes and, if so, which airport to 

choose, based on their earnings, comprising ticket revenue and airport subsidies. Ticket revenue hinges 

on the airline's route pricing and passenger dynamics, while airport subsidies are influenced by the 

airport's functional positioning and competitive dynamics among airlines. Diverse subsidy strategies 

adopted by airports can alter airline revenues, thus initiating an evolutionary game process. The core 

of ticket revenue originates from the interplay between passengers and airlines, where airlines aim to 

attract the maximum number of passengers at a specific ticket price, while passengers strive to 

minimize their travel costs. Airlines target two passenger segments: "hinterland" passengers (within 

the administrative scope of the airport's designated service area) and "leakage" passengers (Refers to 

the loss of passengers in the hinterland of the airport service who choose a new airport after the airline 

transfers routes instead of their corresponding airport). Passenger choices regarding airline routes are 

shaped by travel costs and ticket discounts associated with different airport choices. Airlines adjust 

ticket prices in response to influence travel choice behavior, ultimately achieving equilibrium in this 

interplay. 
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The essence of airport subsidy benefits lies in the strategic interplay between airlines and airports. 

Airports seek routes aligned with their functional roles by offering minimal subsidies, while airlines 

endeavor to maximize earnings by selecting routes that yield higher airport subsidies. When providing 

subsidies, different airports pay different prices to attract suitable airlines, influenced by the functional 

positioning of airports. To ensure comparability between different airports, the concept of "subsidiary 

subsidy" is introduced(Refers to the minimum basic subsidy that meets the functional positioning of 

the airport as the standard, and the subsidy level of different airports is reflected by the ratio of actual 

subsidy to minimum basic subsidy). During the decision-making process, airlines first evaluate 

potential passenger revenue resulting from route transfers. Subsequently, they make decisions based 

on total revenue, encompassing both passenger revenue and comprehensive airport subsidies. This 

process inherently unfolds in stages. Concurrently, passengers' decisions to change their departure 

airport choices in response to airline route shifts introduce heterogeneity and staging into the game 

process. Guided by ticket price information, awareness of fellow passengers' benefits, and individual 

trip earnings, passengers adapt their travel choices through self-learning dynamic evolution. The 

influence of passenger decision-making also reflects the clustering characteristics of a small-world 

network. 

2.2 Methods description 

The selection of different airports for route deployment by airlines represents a decision-making 

process marked by competition among airlines to secure a share of airport subsidies under conditions 

of asymmetric information. The decision-making behavior in this game exhibits randomness due to 

the presence of information asymmetry. Notably, passenger travel choices are significantly influenced 

by airline pricing. By studying the relationship between passenger behavior and airline pricing, one 

can deduce the corresponding connection between passenger choice behavior and airline discounts. 

This understanding aids in calculating passenger revenue for different airport choices when airlines 

deploy routes. By comprehensively considering various airport subsidy scenarios, airlines can make 

well-informed decisions. To achieve this, a two-layer heterogeneous game model is constructed to 

delve into the interplay between airport subsidies and airline route selection behaviors.  

By analyzing passenger travel behavior and changing airline pricing strategy, the upper model 

explores the relationship between ticket price and passenger selection probability, obtains the best 

advantage of airline fare discount and inputs it into the lower layer as the basic condition. Under the 

premise that airports adopt different subsidy strategies, the lower model analyzes the total revenue of 

airlines, and explores the equilibrium point of subsidy strategies and route transfer in line with airport 

functional positioning. The flowchart of dual-layer game-theoretic model, as shown in Figure 2. 
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Figure 2. The flowchart of dual-layer game-theoretic model 

To facilitate the understanding of the model, a unified description of the notations involved in the 

dual-layer game-theoretic model is provided in Table 1. 

Table 1. Notations 

Notations Description 

g

r

R
A

 
the fare of airlines R  operating the route g  at the original airport r  

g

r

R
A

 
the fare of airlines R  operating the route g  at the at the target airport r  

−r
A
rU

 
additional travel costs for the " leakage " passengers 

−r r
p

U
 

travel costs include inter-airport transportation costs for the " leakage " 

passengers 

−r r
T

U  time costs for the " leakage " passengers 
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k

g

i

R
 

the revenue of passenger i   choosing route g   opened by airline R   in 

strategy k  

gR
  the discount coefficient of airline R  brand effect 

( )
i

D t  the decision strategy adopted by passenger i  in period t  

( )
+ 1

i js s
tP  

the probability that passenger i  in period +1t  adopts the strategy adopted 

by passenger j  in period t  

( )gR

r t  the revenue of airline R  in the period t  at airport r  for route g  

g

r

R
N  

the number of passengers of airline R 's route g  in the original hinterland of 

the airport r  

g

r

R
C  is the capacity of airline R 's route g  

 g

r

R
 

the revenue of neighboring airline R  in the period t  at airport r  for route 

g  

r

g
S  the amount of subsidy set by airport r  for short-haul routes g  

r  the airport's total revenue 

ˆ
,r r

g g
B B  

the standard of charge at airport r   for short-haul routes and medium-haul 

routes 

r

R
M  flight operation variable cost 

r

R
F  flight fixed operating cost 

( )g

h

R
P   the probability that airline R  can choose the strategy g

h

R
  for route g  

( )gR

dP   the probability that airline R  can choose the strategy g

d

R
  for route g  

( )g

h
R R

   airline R 's cognitive belief that it is rational to take the strategy decision g

h

R
  

( )g

d

R R
   

the airline R  believes its cognitive belief that it is rational to take the strategy 

decision g

d

R
  

R
 , R

  the income functions of airline R  and airline R  in different policy choices 

 

3. Upper-level game model 
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3.1 Assumptions 

The upper-layer model primarily investigates the impact of different ticket price discounts offered 

by airlines on passenger choices regarding which airport within the airport cluster to travel from. This 

analysis aims to determine the quantity of passengers that can be attracted by varying ticket price 

discounts. The game entities involved in this layer are airlines and non-hinterland passengers. The 

game process involves airlines adjusting ticket prices for route transfers in each period. The specific 

strategies encompass high-discount strategy and low-discount strategy. Non-hinterland passengers 

comprehensively consider travel costs and ticket price discounts to formulate travel choice strategies, 

which include becoming leakage passengers (k=1) and non-leakage passengers (k=2). 

The basic assumptions of this evolutionary game process include: 

H1: Airlines, in order to attract leakage passengers, will adjust ticket prices in each period to 

ensure passenger benefits while considering the total revenue generated by their operated routes. This 

is done to determine the ticket price discounts corresponding to different routes that maximize the total 

revenue. 

H2: To eliminate the influence of differentiated airline ticket prices on passenger decision-making 

behavior. When making decisions, passengers assume there is no pricing differentiation between 

airlines, such as frequent flyer programs, but their decisions might be influenced to some extent by 

potential factors like airline size and brand effects. 

H3: To ensure that passengers can make rational and scientific decisions. Under fixed routes, the 

total number of passengers remains constant, all passengers have access to airline ticket price 

information, and they make decisions based on prices and costs adjustments. 

H4: Airlines establish fare discounts based on the specific conditions of different airports. Here, 

g

r

R
A denote the fare of airlines R  operating the route g  at the original airport (referred to as OD 

route, corresponding to airport pairings), g

r

R
A  denote the fare of airlines R  operating the route g  

at the target airport after transferring. r and r values are 0, x or y , 0 represents that the airline 

does not transfer the route and remains at the original airport; and x  ory  are the other two types of 

airports in the regional airport cluster; among them, x  is the domestic hub airport in the airport cluster, 

and y  is a regional airport in the airport cluster. 

H5: The total number of non-hinterland passengers is denoted as n . 
−r

A
rU represent additional 

travel costs for " leakage " passengers. The additional travel costs include inter-airport transportation 

costs 
−r r

p
U  and time costs 

−r r
T

U  . "Transportation costs" primarily encompass inter-city rail 

transportation costs and intra-city transportation costs. "Time costs" refer to the added duration during 

passenger transfer, computed using the hourly wage cost of local passengers, and a threshold of 3 hours 

is established. After the passenger transfer time exceeds 3 hours, the impetus for transfer significantly 
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diminishes, and the transfer cost increases proportionally to the transfer time. 

H6: Passengers still choosing the original airport will increase costs Q  due to added transfer or 

waiting time. 

H7: When passengers choose routes operated by multiple airlines, they will consider the brand 

effect of airlines, so the brand value of airlines is divided into three levels: high, medium and low. 

Since brand value is a long-term shaping process, the cost of building brand value is not considered in 

this game process. 

According to H1 to H7, the game process is the influence of different fare discounts of airlines 

on the probability of travel choice under the given fare discount and travel cost (different airports in 

the region are selected as the starting point). The travel choice cost matrix is shown in Table 2. 

3.2 Game model 

Table 2. Cost matrix for different passenger selection strategies 

Payoff 
Passenger j  

Leakage Non-Leakage 

Passenger i  

Leakage 

g

rr

R

r
A

A U −+  

g

rr

R

r
A

A U −+  

g

rr

R

r
A

A U −+  

r
gA Q+  

Non-Leakage 

g

r

R
QA +  

g

rr

R

r
A

A U −+  

g

r

R
QA +  

g

r

R
QA +  

According to the cost matrix in Table 2, the revenue function obtained by passengers choosing 

different airlines is 
k

g

i

R
, indicating that the revenue of passenger i  choosing route g  opened by 

airline R  in strategy k  is 

( ) , 1
( )

, 2

k g g g

g

r r
i R R R
R

r r
A

A A U k
t

Q k




−



− − =
=

− =

                      （1） 

Where gR
  represents the discount coefficient of airline R  brand effect. 

The revenue of passengers is affected by their own strategy, neighbor strategy and airline strategy. 

Therefore, the revenue matrix of passengers under different decision-making environments is 

constructed, as shown in Figure 3. 
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Leakage

Leakage Non-Leakage

Low ticket prices High ticket prices Low ticket prices High ticket prices

The strategy 

of passenger i

The strategy 

of neighbor

The strategy 

of airline

The payoff 

matrix of 

passenger i  

Figure 3. The benefit matrix of passengers under different strategies 

In the game process, passenger decision-making is mainly based on the income matrix, that is, 

passengers decide whether they become seepage passengers according to the size of the income 

function, but passengers will also be interfered by neighbors, because passengers and neighbors are 

not fully connected, they will be connected with a certain probability to obtain each other's information, 

and information sharing among airlines is also obtained with a certain probability. According to 

complex network theory, there are WS and NW types of small-world network. WS small-world 

network randomly disconnects the previous connection with a certain probability and connects with 

any node in the network with a fixed probability to establish a new connection. NW small-world 

network, on the basis of not changing the nodes and relations of the original network, The connectivity 

of complex networks is enhanced by the mechanism of randomly adding relationships with new nodes. 

When passengers choose different airlines of the same route, they tend to focus on their own benefits 

and have low requirements for maintaining the original connections of the network. WS small-world 

network can simulate the game process among passengers more accurately. As for the decision-making 

process among airlines, the subjects that affect their income are relatively fixed, and the maintenance 

degree of the original network is high, it is more suitable to use the NW small-world network to 

simulate the evolutionary game relationship of airline strategy selection. 

In an airport group with complex network characteristics, the passenger's strategy choice is 

diffused among passengers through the edges in the network. In the initial state, each passenger has a 

pure policy choice. At the same time, passengers will adjust their decision by the change of their own 

income and the benefit of neighbor selection strategy. 

Neighbors are randomly selected for strategy comparison. In period t , passengers will compare 

their own strategy income with that of their neighbors and update the probability of changing to 

neighbor strategy in period 1t +  according to Fermi rules: 
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( )
( ) ( )

1

t t
1 exp

, （t） ( )

1

1, ( ) ( )

g g

i j

i j

R R

D D

i j

m
P

D D t
i j

t

D t D t

 



−
+




 
+ =  

 
 =

               (2) 

In the formula, parameter m   measures the intensity of individual irrational decision making. The 

smaller the value, the higher the rational degree of individual decision making; ( )
i

D t  is the decision 

strategy adopted by passenger i   in period t  . ( )
+ 1

i js s
tP   represents the probability that 

passenger i   in period +1t   adopts the strategy adopted by passenger j   in period t  . When the 

income of passenger i  in period t  is lower than that of passenger j , passenger i  easily accepts 

the strategy adopted by passenger j  in period t ;On the contrary, if the profit of passenger i  is 

higher than that of passenger j  in period t , passenger i  will adopt the strategy of passenger j  

with a weak probability in period +1t . 

When comparing with neighbors, it will also compare with its own strategic returns in the  period 

1t −  to determine whether its own returns have reached the expectation and whether to change its 

own strategies. The choice probability is 
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Considering the influence of neighbor strategy and its own strategy, the probability of the next 

passenger adjusting to neighbor strategy is 

( )
( )

( ) ( )
( )

( ) ( )

1
1 0.8 0.2

1 1
i j i i

j

i j i j i i i i

D D D Dk
D

D D D D D D D D

t t
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P P
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−
+ = +

− + +−
    (4) 

The revenue of passengers is affected by the pricing of airlines, and the pricing of airlines is 

affected by their own earnings. Therefore, we calculate the revenue ( )gR

r t   of airline R   in the 

period t  at airport r  for route g  is 
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( ) 1( ) min( )  ，g g g g g
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r

R R

r k

R

rt P t n Nt CA = = • +                     (5) 

Where n   is the total number of non-hinterland passengers; g

r

R
N   is the number of passengers of 

airline R 's route g  in the original hinterland of the airport r ; g

r

R
C  is the capacity of airline R 's 

route g . 

In the game process, the airline will consider its own income and the income of neighboring 

airlines to formulate the next fare strategy. The price reduction strategy for the next period is evaluated 

according to the revenue of a single route after the fare discount. If the revenue of an airline increases 

compared with that of the previous period, it will continue to adopt the discount strategy to further 

increase the choice probability of passengers and improve the revenue. If there is a decline in revenue 

in the current period, the airline will reduce the discount to maintain the maximum profit, so the fare 

adjustment strategy is: 
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Where, 
g

r

R
A  is the fare of a neighboring airline; g

r

R
  for neighboring airline. In the formula, the first 

half is divided into the influence of its own income on ticket price, and the second half is divided into 

the influence of neighbor income on ticket price. 

By comparing the fare discount and passenger selection probability corresponding to the 

maximum  ( )gR

r t  income of airlines on route g  under different fare discounts, they are input into 

the lower layer model. 

4. Lower-level game model 

4.1 Assumptions 

The main players of this layer are airlines and airports. The game process is that each airport 

adjusts the subsidy strategy according to the route selection situation. Under a certain subsidy strategy, 

the airline formulates the transferable medium and short route selection strategy according to the upper 

level ticket revenue and airport subsidies. The selection strategy includes selecting the original airport, 

domestic hub airport and regional airport respectively for medium and short routes. 

The basic assumptions of the evolutionary game process in this layer include: 
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H8: To achieve airline route adjustments through market behavior. Large airports need to transfer 

some routes, and small to medium-sized airports take on these transferred routes. Whether airlines 

transfer their routes from large airports is a market behavior rather than an administrative mandate. 

Therefore, subsidy strategies directly influence airline decisions. 

H9: To ensure that airline route optimization is primarily determined by airport subsidy policies, 

and there is competition among airlines. There is a limit to airport subsidies, so when multiple airlines 

choose the same airport for route transfer, it can lead to a decrease in their own revenue. Subsidy 

policies become a key factor for airlines when adjusting routes. When multiple airlines choose an 

airport, they share the airport subsidy S   and the airport subsidy is capped. As the functional 

positioning of airports needs to match the route type, OD route g  in the airport group is divided into 

medium-haul route ĝ   and short-haul route g  . ˆ

r

g
S   represents the subsidy amount of airport r  

against the medium-haul route ĝ . 
r

g
S  indicates the amount of subsidy set by airport r  for short-

haul routes g . 

 ˆ
ˆ

, 0, ,r r

g g
g g

r r x yS S S+ ==                              (7) 

In order to ensure the sustainable development of the airport, the airport will set a subsidy ceiling, 

which according to the survey is 40% of the airport subsidy revenue, and the airport subsidy will no 

longer increase when it exceeds the value. The airport's revenue r  mainly includes business revenue 

ˆ
,r r

g g
B B  from increased routes, and the potential revenue from the airport strategy reached . 

ˆ ˆ
ˆ

r r r r r r

g g g g
g g

n B n B V = + +                           (8) 

In the equation, ˆ

r
g

n  and 
r
g

n  indicate whether the airline runs the routes ĝ  or g  at airport r .The 

value is 0 or 1. 0 indicates that the airline does not select this airport, and 1 indicates that the airline 

chooses this airport. ˆ

r

g
B  and 

r

g
B  indicates the standard of charge at airport r  for short-haul routes 

and medium-haul routes; The degree to which rV  adds routes to the airport is in line with its own 

positioning development;   increases the discount rate for airports on how well the route network 

matches the airport's positioning. 

0.4 * rrS                                      (9) 

At the same time, in order to avoid the excessive accumulation of transfer routes that exceed the 

airport time requirements and realize the coordinated development of the three airports, the specific 
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amount of airport subsidies should be dynamically adjusted according to the actual number of flights 

in the transfer airports, and the growth rate of subsidies should be controlled, which meets the 

following formula: 

 
ˆ

ˆ

ˆ

( ) ( )

( 1) 1 ( ), ,
2N 2N

r r
g g

r rg g

r r
g g

n t n t

S t S t r x y

 
 

+ = − − =
 
  

 
              (10) 

ˆ
Nr
g  and Nr

g  indicate the number of times the airport has attracted medium-haul routes ĝ  and short-

haul routes g .Due to the mature supporting facilities of domestic hub airports and good route network 

effect, the airport has a relatively high resource shortage at all times, so the overall cost of transferring 

to domestic hub airport x  is higher than that of transferring to regional hub airport y . 

H10: This layer model uses the conclusion of the upper layer model. Under the condition of 

maximization of revenue, the fares and the number of passengers attracted by an airline are taken as 

the ticket revenue of the airline in this layer. There is only competition among airlines in this tier to 

share airport subsidies, and there is no competition among passenger tickets. Among them, ĝ

r

R
 means 

the best fare revenue calculated by the upper deck model at airport r  for the medium-haul routes ĝ  

of airline R and gR

r  means the best fare revenue calculated by the upper deck model at airport r  

for the short-haul routes g  of airline R . 

H11: Airline route operating costs include: Airline to airport r  flight operation variable cost 

r

R
M ;Airport r  charges rB ;Flight fixed operating cost 

r

R
F . 

According to H8 to H11, the corresponding utility matrix of airlines' transfer strategies for the 

medium-haul route ĝ  and the short-haul route g  is shown in Table 3. 

4.2 Game model 

Table 3. Transfer strategy utility matrix 

  short-haul routes of airline R  

  No transfer Transfer to airport x Transfer to airport y 

medium-

haul routes 

of airline R  

No 

transfer 
ˆ ˆ

0 0
g gR R

F−  

0 0
g gR R

F−  

ˆ ˆ

0 0
g gR R

F−  

g g g g gR

x x x

R R R

x x

R
S M F B + − − −  

ˆ ˆ

0 0
g gR R

F−  

g g g g gR

y y y

R R R

y y

R
S M F B + − − −  
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Transfer 

to airport 

x 

ˆ ˆ ˆ ˆ ˆg g g g g

xx

R R

x

R

x x

R R
S M F B + − − −  

0 0
g gR R

F−  

ˆ ˆ ˆ ˆ ˆg g g g g

xx

R R

x

R

x x

R R
S M F B + − − −  

g g g g gR

x x x

R R R

x x

R
S M F B + − − −  

ˆ ˆ ˆ ˆ ˆg g g g g

yy

R R

y

R

y y

R R
S M F B + − − −  

g g g g gR

y y y

R R R

y y

R
S M F B + − − −  

Transfer 

to airport 

y 

ˆ ˆ ˆ ˆ ˆg g g g g

yy

R R

y

R

y y

R R
S M F B + − − −  

0 0
g gR R

F−  

ˆ ˆ ˆ ˆ ˆg g g g g

yy

R R

y

R

y y

R R
S M F B + − − −  

g g g g gR

x x x

R R R

x x

R
S M F B + − − −  

ˆ ˆ ˆ ˆ ˆg g g g g

yy

R R

y

R

y y

R R
S M F B + − − −  

g g g g gR

y y y

R R R

y y

R
S M F B + − − −  

The secrecy of airline business strategies leads to strong asymmetry in decision-making 

information among airlines. Based on limited information, airlines always think that their own 

decisions are better than those of their counterparts when making their own decisions, which has 

obvious asymmetric random response characteristics and a certain probability of making mistakes, and 

they are more cautious when facing strategies with lower expected returns. Therefore, an asymmetric 

random response (QRE) equilibrium model is introduced in this layer. 

In the decision-making process, airlines will judge the benefits of three strategies: When the 

benefits of transfer strategy are greater than those of no transfer, airlines will adopt transfer strategy; 

otherwise, they will adjust to no transfer strategy; When an airline chooses to transfer, if the profit of 

the strategy of transferring to x airport is greater than that of transferring to y airport, the airline will 

transfer to x airport; otherwise, it will transfer to y airport. Therefore, based on the QRE model, the 

airline's route selection probability is 

1

1 1

exp ( ) ( ) ( , )

( )
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Where R  stands for the airline making the decision, R  stands for the airline competing with R , 

( )g

h

R
P   stands for the probability that airline R  can choose the strategy g

h

R
  for route g ; ( )gR

dP 

represents the probability that airline R   can choose the strategy g

d

R
   for route g  ; ( )g

h
R R

   

represents airline R 's cognitive belief that it is rational to take the strategy decision g

h

R
 (cognitive 

belief is a representation of how an airline considers the influence of its competitor's strategies on its 

decision making). In other words, when making decisions, airlines will first predict its competitors' 
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strategies and airport subsidy policies , and the more accurate they think the prediction is, the stronger 

their cognitive belief in the rationality of their own strategies; ( )g

d

R R
   indicates that the airline R  

believes its cognitive belief that it is rational to take the strategy decision g

d

R
 ; 

R
  and R

  are the 

income functions of airline R  and airline R  in different policy choices, respectively. See the utility 

matrix of choice strategies in Table 3. ( )g

h

R
P   and ( )gR

dP   form a cyclic nested relationship, which 

better explains airline R 's rational understanding of its own decision making and the influence of 

different airline R 's strategies on its decision making. 

5. Simulation case 

Selecting Sichuan-Chongqing airport group as the research background, this paper makes 

coordinated adjustment to the functions of Shuangliu Airport, Tianfu Airport and Mianyang Airport 

according to the positioning of urban development and the overall development of comprehensive 

traffic.In order to realize the optimal allocation of inter-airport routes through market behavior to the 

maximum extent and meet the functional positioning of inter-airport collaboration, it is necessary for 

each airport to adopt different subsidy strategies to achieve the best route network adjustment. In the 

simulation, Tianfu and Mianyang airports are mainly used to undertake the overflow routes of 

Shuangliu Airport. The overflow routes belong to 6 airlines of different sizes, respectively, the 

medium-haul routes ĝ  and the short-haul routes g  total 63, of which 27 are medium-haul routes 

and 36 are short-haul routes. The simulation takes Tianfu Airport as the representative of domestic hub 

airport and Mianyang airport as the representative of regional airport. The 63 routes of Shuangliu 

Airport will be transferred to two airports, with Tianfu Airport aiming to attract medium-haul routes 

and Mianyang Airport aiming to attract short-haul routes. The airport charge standard shall be 

calculated according to the Civil Airport Charge Standard Adjustment Plan issued by Civil Aviation 

Administration in 2017. According to the situation of three airlines surveyed and literature, the route 

operation cost of airlines was determined. 

Upper-level model simulation process: 

Step 1: At t=0, the NW Small World network of n  passengers and the NW Small World network 

of 6 airlines are generated, each passenger is connected to a neighboring passenger, according to the 

proportion of airline classes, that is, high-end airlines: middle airlines: low-end airlines: 0.35:0.35:0.3, 

seepage passengers: non-seepage passengers: 1:1. The initial strategy selection of passengers is 

randomly generated, and each airline is connected with a neighboring airline, and the initial fare of a 

single route is given. 

Step 2: At t=1, each passenger and airline updates the selection of neighbors, establishes new 

contacts, completes horizontal and vertical comparisons of passenger revenue and airlines, and adjusts 
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the next strategic selection according to the improved Fermi rules. 

Step 3: At t=2, each passenger and the airline disconnects from the previous period to establish a 

new connection, calculates the revenue according to the previous period's selection strategy, updates 

the passenger strategy using the improved Fermi rule, and the airline optimizes the next period's 

discount fares according to the two consecutive periods' revenue. 

Step 4: Repeat step 2 and 3 until t=1000. 

Step 5: In order to avoid the error caused by random process, the simulation of steps 1~4 was 

repeated 100 times. 

Step 6: The average of 100 passenger selection probabilities is taken as the final passenger 

selection result. 

The travel cost parameters between Sichuan and Chongqing airports were calculated according 

to the inquiry of China Railway 12306 official website and the Gaode Maps app, as shown in Table 4. 

Table 4. Passenger transfer cost parameters between airports  

Inter-city 

transportation 

cost (yuan) 

Inter-city 

transportation 

time (hours) 

Intra-city 

transportation 

cost (yuan) 

Intra-city 

transportation 

time (hours) 

Time cost (yuan 

per hour) 

Shuangliu Airport- 

Mianyang Airport 
45~140 45 13 12 60 

Shuangliu Airport- 

Tianfu Airport 
0 0 120 60 60 

Intra-city transportation refers to the average online ride-hailing cost transferred between the 

urban high-speed rail station and the airport, and time cost refers to the hourly time cost determined 

according to the average wage level in Sichuan and Chongqing. 

Lower-level model simulation process: 

Step 1: At t=0, determine the cost parameters of the airline and the initial probability of strategy 

selection ( )g

r

R
P  . At the same time, input the airline ticket price, optimal discount, and passenger 

transfer situation from the upper model to the lower model.  

Step 2: At t=1, the airline updates its strategy selection based on the asymmetric QRE model.  

Step 3: At t=2, the airline calculates its earnings based on the previous strategy selection, and 

adjusts its strategy through the asymmetric QRE model.  

Step 4: Repeat step 2 and 3 until t=100.  
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Step 5: In each simulation process, take the mean of the stable value of the airline company's final 

selection probability as the result. 

6. Results 

6.1. Upper-level model solution 

By analyzing the game between airline fare and passenger travel choice, the upper layer model 

determines the best pricing for airlines to attract the largest "seepage" passengers to maximize profits 

after transferring routes. According to the model described in 3.2, the initial parameters of the upper 

model are set as follows. Airline fare discount on the degree of passenger attraction will be affected by 

the initial fare price, passenger travel cost, therefore, the impact of different initial fare, passenger 

travel cost on the selection probability is discussed. The initial fare is set at 460 yuan, 850 yuan and 

1900 yuan in accordance with the domestic short, medium and long distance average voyage and fare 

rules; Airlines are divided into three categories according to different brand values. Set the initial 

simulation parameters as follows based on the upper-layer model simulation requirements. 

Table 5. Initial value of upper model parameter 

ĝ  g  m  
 gR  

(Low-end) 

 gR  

(Medium-end) 

 gR  

(High-end) 

0.5 0.5 0.2 0.3 0.3 0.15 

In order to ensure the accuracy and stability of the simulation, the sensitivity of the passenger 

selection probability to each parameter value is compared, and the sensitivity index of the initial 

parameter value is evaluated by small changes in the initial parameter value (the change rate of the 

passenger selection probability/the change rate of the parameter). 

Table 6. Comparative analysis of parameter sensitivity 

Parameter Parameter 

reference 

value 

Changed 

parameter 

Parameter 

change rate 

(%) 

Change rate 

of passenger 

selection 

probability 

(%) 

Initial 

sensitivity 

index (%) 

m  170 85 -50 36 -0.72 

 gR  

(Low-end) 

1 2 100 23 0.23 

 gR (Medium-

end) 

40 80 50 43 0.86 

 gR  

(High-end) 

150 120 -80 -32 0.4 
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As can be seen from Table 6, the strength of individual irrational decision making m  and the 

discount coefficient of airline brand value  gR
 are different within a certain range, and the selection 

probability of passengers fluctuates around the simulation result corresponding to the reference value 

of the parameter, which has no obvious impact on the simulation conclusion. 

6.1.1. Effect of fare discount on travel choice probability of short-haul passengers 

Under the condition that the initial fare and passenger transfer cost are fixed and the cost of 

shaping the brand value of the airline is not considered, the airline increases the passenger selection 

probability by adjusting the fare, and the passenger reduces the travel cost by choosing different 

airlines. The two methods reach stability through constant chess. After 1000 times of simulation, the 

corresponding choice probability of the passenger under different fares is obtained. 

 

Figure 4. Influence of fare discount on selection probability of short-haul passengers 

The first subfigure of Figure 4 shows that the discount of fares adopted by three different airlines 

ranges from 6.1 discount to 8.9 discount, with a wide fluctuation range. As can be seen from the figure, 

the fares of airlines with low brand value are stable and fast with minimal fluctuation. In order to 

compete with other airlines, they adopt the strategy of price reduction and occupy a monopoly position 

in passenger attraction ability. There is an obvious competition process between medium brand value 

airlines and high brand value airlines, and the fare fluctuation is obvious. In order to maintain the 

ability of attracting passengers, medium brand value airlines adopt a fluctuating price reduction 

strategy and gradually determine the better fare range. Airlines with high brand value adopt the strategy 

of high fare and low choice probability of passengers to maintain their earnings, and the fare is 

maintained at 20% discount. The second subfigure of Figure 4 shows the selection probability of 

passengers under different fare discounts of airlines, among which the selection probability of airlines 

with high brand value is at least 0.02, that of airlines with medium brand value is 0.18, and that of 

airlines with low brand value is only 0.67. 

It can be seen that on short-haul routes, airlines with high brand value have the lowest market 

share and lose their competitiveness on short-haul routes, while airlines with low brand value adopt 
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the strategy of low price near the cost to obtain the most market share and ensure their own earnings. 

The simulation process reflects the influence of multi-source strategies adopted by different game 

players on each other's behavior when they pursue profit. 

6.1.2. Effect of fare discount on travel choice probability of medium-haul passengers 

The behavior of passengers choosing airlines on medium-haul routes was simulated, and the 

simulation period was 1000 times to obtain the corresponding selection probability of passengers of 

airlines with different brand values under different fares. The simulation results are shown in Figure 5. 

  

Figure 5. Influence of fare discount on selection probability of medium-haul passengers 

The first subfigure of Figure 5 shows that for medium-haul routes, airlines adopt fare discounts 

ranging from 6.3 to 8.5. The degree of fare fluctuation is relatively obvious, and the stable period 

becomes longer. The high brand value airlines adopt the higher fare strategy for the medium route, and 

the fare discount is mainly 8.2 discount. Airline fare discount of medium brand value is stable at 7.4 

discount; Low brand value airlines adopt a lower fare strategy, which can make them gain better profits 

in the competition, and the main discount they take is 6.4 discount. The second subfigure of Figure 5 

It can be seen that the brand value airline maintains its passenger selection probability at 0.45 by 

reducing the fare; The passenger selection probability of high brand value airlines remained at 0.31; It 

can be seen that high and medium brand value airlines have obvious influence on passenger selection 

probability, and there is a trade-off effect. 

It can be seen that on medium-range routes, high-brand value airlines adopt high-fare strategy to 

sacrifice some passengers' selection probability to gain higher returns, while medium-brand value 

airlines compete for some passengers from high-brand value airlines to improve their own returns by 

reducing fares. Airlines with low brand value try to improve their own profitability through price 

reduction, but the effect is limited. Their selection probability is 0.12. In general, the difference 

between the effect of changing passenger travel behavior by fare on medium-range routes is decreasing. 
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6.1.3. Effect of fare discount on travel choice probability of long-haul passengers 

The behavior of passengers choosing airlines on long-haul routes was simulated, and the 

simulation period was 1000 times to obtain the corresponding selection probability of passengers of 

airlines with different brand values under different fares. The simulation results are shown in Figure 6. 

 

Figure 6. Influence of fare discount on selection probability of long-haul passengers 

The first subfigure of Figure 6 shows that for medium-haul routes, airlines adopt a fare discount 

range of 6.0 to 7.8, with a small degree of fare fluctuation, and the fare quickly becomes stable. Airlines 

with high brand value still adopt higher fare strategy, and their fare discount is mainly 7.6 discount. 

Airline fare discounts of medium brand value were stable at 6.8 percent; Low brand value airlines take 

a stable discount of 6.1 percent, similar to the discount of medium brand value airlines. The second 

subfigure of Figure 6 Passenger selection probability of high brand value airlines is at a medium level 

and stable at 0.31;In the medium brand value airline passenger selection probability is stable at a high 

level of 0.43;The passenger selection probability of low brand value airlines is stable at 0.17. 

It can be seen that on long-haul routes, airlines with high brand value still obtain high returns 

through the selection probability of medium passengers with high fares. Airlines with medium brand 

value maintain higher returns through lower fare strategy in exchange for more passenger selection 

probability; Airlines with low brand value do not gain more passengers by widening the fare gap for 

long-haul routes. Under the influence of airlines with high brand value, although the fare is higher, 

passengers' selection probability is also higher. 

6.1.4. Equilibrium point between ticket prices and passenger selection probability 

Through the above analysis, it can be seen that the fare strategy of airlines with high brand value 

plays a dominant role in the travel choice behavior of passengers, and its fare strategy will significantly 

influence and transmit to airlines with medium and low brand value. Low brand effect airlines have a 

good system of choosing passengers through low fare strategy on long-haul routes, but high brand 

value airlines have too much impact on them on short-haul routes, and the effect of low price strategy 
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is obviously insufficient. The competition between medium brand value airlines and high brand value 

airlines is obvious, and the competition between them will obviously affect the choice behavior of 

passengers. According to the above process, the fare strategies adopted by airlines with different brand 

values for different routes are determined and input into the lower layer model. 

The pricing strategy of airlines is based on the premise of maximum return. Therefore, the optimal 

return of airlines under different fare discounts is analyzed as the input of the lower-level model, which 

mainly studies the game of attracting short-haul routes between two airports. Therefore, for the short-

haul and medium-haul routes of three types of airlines, the initial fare of 460 yuan and 850 yuan are 

selected respectively. Under different discounts, the best returns of three types of airlines are shown in 

Figure 7. 

 

Figure 7. Apply the best pricing strategy of airlines in the lower model 

As can be seen in Figure 7, when the initial fare of short-haul route is 460 yuan, the fare discount 

of low, medium and high-end airlines is 0.62, 0.78 and 0.92 respectively, and the airline has the highest 

revenue. When the initial fare of the medium-range route is 850 yuan, the fare discount of the low, 

medium and high-end airlines is 0.64, 0.73 and 0.82 respectively, the airline company has the highest 

profit. Therefore, with the improvement of brand effect, the airline’s fare discount should be 

appropriately reduced to meet the airline’s income maximization. The above best discount and profit 

are taken as the basis of the game between the lower-level model and the airport subsidy strategy. 

6.2. Lower-level model solution 

According to the model described in section 4.2, the simulation was carried out according to the 

route operating cost and different airport subsidy strategies. The airport subsidy strategy means that 

the airport subsidy strategy coefficient is multiplied by the initial value of the airport subsidy, where 

the airport subsidy strategy coefficient is adjusted according to the airport subsidy strategy, and the 

initial value of the subsidy means that 8% of the airport revenue is taken as the initial value of the 

subsidy. According to the charging standard of Sichuan-Chongqing airport group and the positioning 
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situation of airport functions, the parameters are set as follows. 

Table 7. Initial value of lower model parameter 

0
( )iR

xP 
 0

( )jR

xP 
 0

( )iR
yP 

 0
( )jR

yP 
 

0

0
( )iRP 

 
0

0
( )jR

P 
 

0.2 0.2 0.2 0.2 0.6 0.6 

In order to verify the rationality of the set parameters on the simulation results, the initial 

probability values of six airlines transferring routes were randomly selected within the range of (0,0.5], 

and the simulation results were shown in Figure 8.It can be seen that the initial probability mainly 

affects the probability value that has not reached the stable stage, and the sensitivity of the final 

simulation result to the setting of the initial probability value is not obvious. 

 

Figure 8. Sensitivity analysis of initial parameters in the lower level model 

6.2.1. Evolutionary game stability analysis 

According to the target positioning that Tianfu Airport attracts medium-haul routes and Mianyang 

airport attracts short-haul routes, different subsidy strategies and airport charge strategies are adopted 

to analyze the average selection probability of medium-haul routes and short-haul routes 

corresponding to six airlines. The evolutionary game process is shown in Figure 9 below. 
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Figure 9. Game stability of different subsidy strategies 

As can be seen from Figure 9, after the iteration period is 15 periods, the effect of subsidy 

strategies is stable in the course of route selection game of 6 airlines. Different subsidy strategies 

among airports will affect the average selection probability of airlines, reflecting the game process 

between airport subsidies and airline selection. Figure 9 (a) Fixed Tianfu Airport subsidy strategy. 

When the subsidy coefficient of Mianyang Airport is 5 or above, the subsidy strategy of Tianfu Airport 

will have a significant impact, resulting in a sharp decline in the average attraction ability of Tianfu 

Airport to six airlines on medium-haul routes (that is, the corresponding curves of positive definite 

airport subsidy coefficient of 5 and 6 decline);When the subsidy strategy of Mianyang Airport is low 

subsidy strategy (the figure corresponds to the curves corresponding to the coefficient of subsidy 

strategy of Mianyang Airport is 2, 3 and 4), the average attraction ability of Tianfu Airport to the 

medium-haul routes of the six airlines is enhanced, and the curve rises.Figure 9 (b) Fixed subsidy 

strategy of Mianyang Airport. When Tianfu Airport subsidy coefficient is 3 or above, the subsidy 

strategy of Mianyang Airport will have a significant impact, resulting in a sharp decline in the airline 

attraction ability of Mianyang Airport (curve with a downward trend in the figure);When Tianfu 

Airport adopts a low subsidy strategy for short-haul routes (the subsidy strategy of Tianfu Airport is 

curve 1 and curve 2 in the figure), Mianyang Airport's ability to attract short-haul routes is enhanced. 

6.2.2. Cognitive belief in decision making and game stability analysis 

Airlines constantly enhance their own decision-making experience in the decision-making 

process, which will change their cognition and belief in decision-making of themselves and other 

airlines. By fixing the subsidy strategy coefficient of two airports and changing the airline's cognition 

and belief in decision-making ( )g

h
R R

   , the effects of different airline's decision belief on airport 

subsidy strategy were analyzed. 
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Figure 10. The influence of decision-making cognitive beliefs on game results 

Figure 10 (a) shows the fixed subsidy strategy of Mianyang Airport and the airlines' cognitive 

beliefs about competitors' decision making ( )g

d

R R
   and the changing airlines' cognitive beliefs about 

themselves ( )g

h
R R

  . It is found that when the subsidy strategy coefficient of Tianfu Airport is 2.6, the 

airlines' cognitive beliefs will have an inflection point on the growth trend of selection probability. 

That is, low cognitive beliefs correspond to high selection probability before the inflection point, and 

high cognitive beliefs correspond to high selection probability after the inflection point. Moreover, 

under the same cognitive belief after the inflection point, the airport subsidy strategy has a significant 

impact on the airline selection probability, and the growth rate is accelerated. Figure 10 (b) shows that 

changing airlines' cognitive beliefs about competitors' decisions has a small effect on the selection 

probability, but accelerates the airline's selection strategy to reach its peak. Similar to Figure 10 (a), 

when the airport subsidy strategy is 2.7, there is also an inflection point where the growth trend of 

selection probability is different. Therefore, before the inflection point, when the airport subsidy 

strategy is low, the weaker the cognitive belief, the stronger the airport's ability to attract routes with 

the increase of airport subsidy strategy; After the inflection point, the stronger the cognitive belief, the 

stronger the airport's ability to attract routes with the increase of airport subsidy strategy; According 

to the inflection point of airport subsidy strategy, the airline's cognitive belief was determined. As can 

be seen from the inflection point of Figure 10 (a) curve, the airline's cognitive belief affects its ability 

to predict revenue. The higher the airport subsidy, the more likely it is to obtain high revenue, which 

enhances its belief in decision making. As can be seen from the inflection point of the curve in Figure 

10 (b), the airline enhances its cognitive belief of competitors, enhances its possibility of obtaining 

high returns, and further enhances its decision selection probability. 

6.2.3. Analysis of optimal subsidy strategy 

The subsidy strategies of the two airports are a dynamic adjustment process, and different subsidy 

strategies of the two airports will affect the selection probability of airlines. The simulation will change 

the average selection probability of six airlines on medium-haul routes and short-haul routes under 

different subsidy strategies of the two airports, and determine the subsidy strategies of the two airports 
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when realizing functional positioning. 

 

Figure 11. Relationship between airport subsidy strategy and route transfer probability 

Airports attract routes under the dual influence of their own subsidy strategies and the subsidy 

strategies of other airports. Airlines will compare the total revenue obtained from subsidies at different 

airports, so as to make route strategy choices. Figure 11 shows the probability of airlines choosing 

Tianfu Airport for medium-haul routes under different subsidy strategies at the two airports. Figure 11 

(a) shows the three-dimensional diagram of the effect of Tianfu Airport's subsidy strategy on airline 

selection probability under different subsidy strategies of Mianyang Airport, aiming at attracting 

medium-haul routes and positioning itself as a regional aviation hub. Figure 11 (a) shows that when 

the subsidy strategy of Tianfu Airport is less than 4.3, the subsidy advantage of Mianyang Airport 

relative to Tianfu Airport has two sections. The first section is that the subsidy coefficient of Mianyang 

Airport is above 5.4, and the subsidy of Mianyang Airport has a strong advantage section, which makes 

the curved surface in the figure increase sharply, and the subsidy strategy of Mianyang Airport has an 

absolute advantage. Only when the subsidy strategy of Tianfu Airport is greater than 4.3 can it break 

the balance and enter the stage of comparative advantage. Therefore, when the subsidy coefficient of 

Mianyang Airport is above 5.4, Tianfu Airport should have a subsidy strategy greater than 4.3 if it 

wants to be attractive to the medium-haul routes of six airlines. The other interval is that the subsidy 

coefficient of Mianyang Airport is below 5.4, and the effect of the subsidy strategy of Tianfu Airport 

and Mianyang Airport has a relatively competitive interval (that is, the curve is relatively flat). Only 

when the subsidy strategy coefficient of Tianfu Airport exceeds 3.4,Compared with Mianyang Airport, 

the subsidy strategy of Tianfu Airport has an inflection point for the medium-haul routes of 6 airlines 

to establish a more obvious attracting ability. Therefore, considering the influence of the subsidy 

strategy of Mianyang Airport, the optimal subsidy strategy of Tianfu Airport is between 3.4 and 5.5. 

Figure 11 (a) Neutron graph (c) indicates that if Tianfu Airport wants to maintain the selection 

probability of medium-haul routes at 0.4, the subsidy coefficient of Tianfu Airport is above 1.8 and 

shows a parabolic relationship with the increase of the subsidy coefficient of positive definite airport. 

Subfigure (d) shows that if Tianfu Airport wants to maintain the selection probability of medium-haul 

route at 0.8, the subsidy coefficient of Tianfu Airport should be greater than 4.3 based on different 
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subsidy strategies of Mianyang Airport and increase with the increase of the subsidy coefficient of 

Mianyang Airport. 

Figure 11 (b) shows Mianyang Airport's positioning as a regional airport with the goal of 

attracting short-haul routes. Under different subsidy strategies of Tianfu Airport, the effect of subsidy 

strategies of Mianyang Airport on the probability of airline selection is shown in the three-dimensional 

diagram. Figure 11 (b) shows that when the subsidy coefficient of Tianfu Airport increases to 3.9 or 

more, the subsidy strategy of Tianfu Airport has an absolute advantage compared with that of 

Mianyang Airport, that is, airlines are more willing to choose short-haul routes at Tianfu Airport; 

Therefore, only when the subsidy coefficient of Tianfu Airport is less than 3.9, can Mianyang Airport 

establish a relative advantage by increasing the subsidy coefficient, especially when the subsidy 

strategy of Mianyang Airport reaches 4.9 or more (faster curve growth).Therefore, if the airport wants 

to realize the cooperative subsidy strategy for short-haul routes, the subsidy strategy of Tianfu Airport 

is below 3.8, and the optimal subsidy strategy of Mianyang airport is between 3.6 and 6.2, which can 

better guide airlines to realize the airport function positioning. Figure 11 (b) Neutron graph (e) shows 

that if Mianyang Airport wants to maintain the short-haul route selection probability of 0.4, the 

corresponding relationship between its subsidy strategy and Tianfu Airport's subsidy strategy has a 

steep turning point, that is, if Mianyang Airport achieves high attractiveness, the subsidy coefficient 

of Tianfu Airport should be lower than 3.8; once the subsidy coefficient of Tianfu Airport is higher 

than 3.8, the subsidy efficiency of Mianyang Airport will decrease significantly. Subfigure (f) shows 

the relationship of the subsidy coefficient between Tianfu Airport and Mianyang Airport in order to 

maintain a selection probability of 0.8 for short-haul routes in Mianyang Airport. The two have a 

certain linear relationship. 

According to functional positioning coordination among airports, Tianfu Airport and Mianyang 

Airport attract medium-haul and short-haul routes respectively, and attract 80% of transferable routes. 

According to subfigure (c)(e), the optimal subsidy strategy for the two airports when realizing route 

coordination is that Tianfu Airport has a subsidy coefficient of 4.3, and Zhengding airport has a subsidy 

strategy of 6.8. 

7. Conclusions 

This paper uses airport subsidy as a key driving factor to study the mechanism of the evolution 

of the route network among passengers, airlines and airports, and constructs a two-tier evolution model. 

The relationship between airline pricing strategy and passenger selection, airline route selection 

strategy and airport subsidy strategy is analyzed. The following conclusions are obtained through 

simulation: 

(1) When airlines transfer routes to attract non-hinterland passengers (passengers from other 

airports) through fare discounts, passengers on different flights have a significant impact on fare 

discounts and brand value of airlines. In short flights, the brand value of airlines is more advantageous 

and the corresponding strategy of high fares can maintain revenue; 

(2) Passenger selection probability is not in direct proportion to airline revenue. In order for 
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airlines to maintain high revenue, it is necessary to comprehensively determine according to 

passengers' rational degree and flight distance, and the best discount range of airlines is 0.6~0.9 

discount. 

(3) The inter-airport subsidy strategy has obvious position difference advantages. When the 

subsidy coefficient of Tianfu Airport exceeds 3.8, it has a monopolistic subsidy effect, resulting in 

Mianyang Airport's difficulty in attracting routes without losing money; When the subsidy coefficient 

of the two airports is below 2.3, there is no gap competition interval, and the attraction ability of the 

two airports is similar. 

(4) In order to achieve route coordination between airports and maintain the best route attraction 

ability, the subsidy strategies of the two airports have parabolic and linear types, and the optimal 

strategy should be determined according to the curve type of the other airport's strategy. For example, 

Tianfu and Mianyang airports want to attract more than 80% of transferable medium and short-range 

routes, Tianfu Airport has a subsidy coefficient of 4.3, and Mianyang Airport has a subsidy strategy of 

6.8. 

The research results have strong theoretical value for in-depth understanding of the influence of 

passenger learning ability on the attractiveness of fare discounts and the influence of integrating 

competitors' route selection strategies on the attractiveness of airport subsidies. It provides the method 

support for realizing the cooperative development of airports within the airport group by optimizing 

the route network layout, and also provides the quantitative method for scientifically formulating the 

optimal airport subsidy strategy. 
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