On Dominated Multivalued Operators Involving Nonlinear Contractions and Applications

Tahair Rashama,b, Najma Noorb, Muhammad Safeerc
R. P. Agarwald, Hassen Aydié,fg and Manuel De La Senh

a,b,cDepartment of Mathematics, University of Poonch Rawalakot, Azad Kashmir, Pakistan;
tahairrasham@upr.edu.pk, najma.noor5672@gmail.com, safeerajku@yahoo.com
dDepartment of Mathematics Texas A& M University-Kingsville 700 University Blvd., MSC 172
Kingsville, Texas 78363-8202 USA;
ravi.agarwal@tamuk.edu
eUniversité de Sousse, Institut Supérieur d’Informatique et des Techniques de Communication,
H. Sousse 4000, Tunisia
tChina Medical University Hospital, China Medical University, Taichung 40402, Taiwan
fDepartment of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences
University, Ga-Rankuwa, South Africa
hasse.aydi@isima.rnu.tn
gh Institute of Research and Development of Processes IIDP, University of the Basque Country,
Campus of Leioa, PO Box 48940, Leioa, Bizkaia 48940, Spain;
manuel.delasen@ehu.eus

Abstract: The objective of this research is to establish new results for set-valued dominated mappings that meet the criteria of advanced locally contractions in a complete extended b-metric space. Additionally, we intend to establish new fixed point outcomes for a couple of dominated multi-functions on a closed ball that satisfy generalized locally contractions. This study presents novel findings for dominated maps in ordered complete extended b-metric spaces. Additionally, we introduce a new concept of multi-graph dominated mappings on a closed ball within these spaces and demonstrate some original results for graphic contractions equipped with a graphic structure. To demonstrate the uniqueness of our new discoveries, we verify their applicability in obtaining a joint solution of integral and functional equations. Our findings have also led to modifications of numerous classical and contemporary results in existing research literature.

2010 Mathematics Subject Classification: 47H04; 54H25; 05C12; 47H10; 39Bxx
1. Introduction and basic preliminaries

Fixed point theory is a branch of functional analysis that focuses on studying mathematical mappings or operators that have at least one point that remains unchanged under their action. It is a popular area of research due to large applications in both applied and pure mathematics, such as contemporary optimization, control theory, numerical analysis, geometry in topology, dynamical system and modeling. A fixed point theory is a fascinating area of mathematics that is fundamentally important. It serves as an important investigative and detecting tool in many fields. In addition to nonlinear and functional analysis, fixed point (abbreviated as FP) theory aims to advance economics, finance, computer science, and other disciplines in solving difficulties for matrix, integral, and fractional differential equations. This led to the development of the theory of FP as an analytical theory. The Banach FP theorem, the first well-known result in FP theory, was created by well-known mathematician Banach [11]. It is programmed to resolve differential, integral, and functional equations that are both linear and nonlinear in a number of different generalized spaces. The Banach’s theorem can be applied in many different ways, each involving a distinct distance space and a separate set of contractive-type conditions that must be satisfied. Bakhtin [12], Czerwik [15–16], Demma et al. [18] and Elhamed et al. [19] investigated various extensions of the Banach’s result in a metric and a \(b \)-MS. In addition to some new FP conclusions, Wardowski [42] offered a new generalization of Banach’s contraction called \(F \)-contractions. Lateral, Agarwal et al. [2], Ahmed et al. [3], Alsulami et al. [6], Ameer et al. [9], Aydi et al. [10], Karapinar et al. [24] and Radcharoen et al. [34] showed different extensions of Wardowski’s result [42] in different setting of metric spaces.

Nadler [28] developed the concept of set-valued contractive maps and shared his well-known finding that expanded the Banach FP result [11] for multi-valued mappings. Afterward, Acer et al. [1], Ali et al. [5], Altun et al. [8], Feng et al. [20], Jleli et al. [22], Miank et al. [27], Rasham et al. [35], Sgroi et al. [36] and Secelean et al. [40] discussed significant FP results concerning with
multivalued mappings.

An extended b-metric space was initially proposed by Kamran et al. [23] who also showed certain FP theorems for self-mappings defined on these spaces. Additionally, Rasham et al. [36] proved FP theorems in a complete b-metric-like space by utilizing set-valued dominated locally F-contractions by employing the first condition of Wardowski’s result. Results of FP on a closed ball for F-contractions and related applications regarding the systems of integral equations were established by various authors in [9, 36, 38].

We ensure existence of various new generalized FP outcomes satisfying a locally contraction on a closed ball defined in a complete extended b-metric space. Also, some new definitions and examples are introduced. Furthermore, we obtained new common FP results for α_*-dominated mappings in a complete extended b-metric space. Illustrative examples are given to validate our new acquired outcomes in which contractive conditions hold only on a closed-ball, but do not exist on the whole space. Moreover, applications for nonlinear system of integral equations, functional equations and on graph theory are given to show the originality of our obtained outcomes.

Definition 1.1 [22] Let \mathcal{A} be a non-empty set and $s \geq 1$. The function $d: \mathcal{A} \times \mathcal{A} \rightarrow [0, \infty)$ is said a b-metric with coefficient s if the following conditions hold for all $g, x, e \in \mathcal{A}$;

(i) $d(g, g) = 0$;

(ii) $d(g, e) = 0 \Rightarrow g = e$;

(iii) $d(g, e) = d(e, g)$;

(iv) $d(g, e) \leq s[d(g, x) + d(x, e)]$.

Then, the pair (\mathcal{A}, d) is called a b-metric space, shortly as b-MS.

Example 1.2 [22] Suppose $\mathcal{A} = [0,1]$. The function $d: \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{R}$ defined by $d(h, t) = |h - t|^2$ for all $h, t \in \mathcal{A}$ is a b-metric with $s = 2$.

Definition 1.3 [22] Let (\mathcal{A}, d) be a b-MS.
(i) The sequence \(\{g_n\} \) in \(\mathcal{A} \) is convergent to \(g \) if for all \(\varepsilon > 0 \), there exists \(S = S(\varepsilon) \in \mathbb{N} \) such that \(d(g_n, g) < \varepsilon \), \(\forall \ n \geq S \).

(ii) A sequence \(\{g_n\} \) in \(\mathcal{A} \) is called a Cauchy if for all \(\varepsilon > 0 \) there exists \(S = S(\varepsilon) \in \mathbb{N} \) such that \(d(g_n, g_m) < \varepsilon \), for all \(n, m \geq S \).

(iii) A \(b \)-metric space is complete if for every Cauchy sequence in \(\mathcal{A} \) is convergent to some point in \(\mathcal{A} \).

Definition 1.4 [23] Let \(\mathcal{A} \) be a non-empty set and \(\theta: \mathcal{A} \times \mathcal{A} \to [1, \infty) \) be a function. A mapping \(d_\theta: \mathcal{A} \times \mathcal{A} \to [0, \infty) \) is said an extended \(b \)-metric if the following assumptions hold for all \(x, y, z \in \mathcal{A} \):

(i) \(d_\theta(x, y) = 0 \) iff \(x = y \);

(ii) \(d_\theta(x, y) = d_\theta(y, x) \);

(iii) \(d_\theta(x, z) \leq \theta(x, z)[d_\theta(x, y) + d_\theta(y, z)] \).

The pair \((\mathcal{A}, d_\theta) \) is called an extended \(b \)-metric space, shortly as, \(EbMS \). Let \(h \in \mathcal{A} \) and \(r > 0 \), \(\overline{B}_{d_\theta}(g_0, r) = \{ q \in \mathcal{A}: d_\theta(q, h) \leq r \} \) is called a closed ball in the \(EbMS \).

Example 1.5 [26] Let \(\mathcal{A} = [0, \infty) \). Define \(d_\theta: \mathcal{A} \times \mathcal{A} \to [0, \infty) \) by

\[
d_\theta(h, e) = \begin{cases}
0, & \text{if } h = e; \\
3, & \text{if } h \text{ or } e \in \{1, 2\}, h \neq e; \\
5, & \text{if } h \neq e \in \{1, 2\}; \\
1, & \text{otherwise}
\end{cases}
\]

Then, \((\mathcal{A}, d_\theta) \) is an \(EbMS \) where \(\theta: \mathcal{A} \times \mathcal{A} \to [1, \infty) \) is defined by

\[
\theta(h, e) = h + e + 1, \text{ for all } h, e \in \mathcal{A}.
\]

Definition 1.6 [23] Let \((\mathcal{A}, d_\theta) \) be an \(EbMS \).

(i) A sequence \(\{g_n\} \) in \(\mathcal{A} \) converges to a limit point \(g \) if for each \(\varepsilon > 0 \) there exists \(S = S(\varepsilon) \in \mathbb{N} \) such that \(d_\theta(g_n, g) < \varepsilon \), for all \(n \geq S \).
(ii) A sequence \(\{g_n\}\) in \(\mathcal{A}\) is said Cauchy if for all \(\varepsilon > 0\) there exists \(S = S(\varepsilon) \in \mathbb{N}\) such that
\[
d_\theta(g, g_m) < \varepsilon \quad \text{for all } n, m \geq S.
\]

(iii) If every Cauchy sequence in \(\mathcal{A}\) converges to some point \(g \in \mathcal{A}\) then \((\mathcal{A}, d_\theta)\) is said to be complete.

Remark 1.7 [26] Every \(b\)-MS is an \(Eb\)MS with a constant function \(\theta(x, z) = s\) for \(s \geq 1\). However, it should be noted that the opposite statement is not always true in a general sense.

Definition 1.8 [36] Let \(Q\) be a non-empty subset of \(\mathcal{A}\) and there exist an element \(l\) in \(\mathcal{A}\). Then, \(q \in Q\) is called a best approximation in \(Q\) if
\[
d_\theta(l, q) = \inf_{q \in Q} d_\theta(l, q).
\]

Here, \(P(\mathcal{A})\) represents the collection of all subsets of \(\mathcal{A}\) that are compact.

Let \(\psi\) represent the collection of all non decreasing functions \(\psi: [0, +\infty) \rightarrow [0, +\infty)\) for which \(\sum_{k=1}^{\infty} \psi^k(h) < +\infty\) and \(\psi(h) < h\), where \(\psi^k\) denotes the \(k^{th}\) iterative term of \(\psi\).

Definition 1.9 [37] Suppose \(H_{d_\theta}: \mathcal{P}(\mathcal{A}) \times \mathcal{P}(\mathcal{A}) \rightarrow \mathbb{R}^+\) is a function, defined by
\[
H_{d_\theta}(M, N) = \max\left\{\sup_{e \in M} (e, N), \sup_{f \in N} (M, f)\right\} \quad \text{for all } M, N \in \mathcal{P}(\mathcal{A}).
\]

Then, \(H_{d_\theta}\) is called a Pompeiu-Hausdorff \(Eb\) on \(\mathcal{P}(\mathcal{A})\).

Definition 1.10 [37] Let \(\mathcal{A}\) be a non-empty set \(K \subseteq \mathcal{A}\) and \(\alpha: \mathcal{A} \times \mathcal{A} \rightarrow [0, +\infty)\). A mapping \(S: \mathcal{A} \rightarrow \mathcal{P}(\mathcal{A})\) satisfying
\[
\alpha_*(Sg, Sh) = \inf\{\alpha(t, z): t \in Sg, z \in Sh\} \geq 1, \quad \text{whenever } \alpha(t, z) \geq 1, \text{for all } t, z \in \mathcal{A}
\]
is called \(\alpha_*\)-admissible. The mapping \(S: \mathcal{A} \rightarrow \mathcal{P}(\mathcal{A})\) satisfying \(\alpha_*(a, Sa) = \inf\{\alpha(a, h): h \in Sa\} \geq 1\) is said to be \(\alpha_*\)-dominated on \(K\).

Definition 1.11 [42] Let \((\mathcal{A}, d)\) be a metric space. A function \(L: \mathcal{A} \rightarrow \mathcal{A}\) is known as an \(\mathcal{F}\)-contraction if there exists \(\tau > 0\) such that for each \(y, x \in \mathcal{A}\) with \(d(L(y), L(x)) > 0\), the following inequality holds:
\[
\tau + \mathcal{F}(d(L(y), L(x))) \leq \mathcal{F}(d(y, x)).
\]

Here, the function \(\mathcal{F}: \mathbb{R}_+ \rightarrow \mathbb{R}\) satisfies the following assumptions:

(\(\mathcal{F}1\)) \(\mathcal{F}\) is a strictly-increasing function;

(\(\mathcal{F}2\)) \(\lim_{i \rightarrow +\infty} \delta_i = 0\) if and only if \(\lim_{i \rightarrow +\infty} \mathcal{F}(\delta_i) = -\infty\), for every positive sequence \(\{\delta_i\}_{i=1}^{\infty}\);

(\(\mathcal{F}3\)) For each \(\delta \in (0, 1)\), \(\lim_{j \rightarrow \infty} \delta^j \mathcal{F}(\delta_j) = 0\).
Example 1.12 [37] Let \(\mathcal{A} \) be a non-empty set and the function \(\alpha: \mathcal{A} \times \mathcal{A} \to [0, \infty) \) be given by

\[
\alpha(c, q) = \begin{cases}
1 & \text{if } c > q \\
\frac{1}{4} & \text{if } c \leq q.
\end{cases}
\]

Consider the mappings \(G, R: \mathcal{A} \to \mathcal{P}(\mathcal{A}) \) defined as \(Gr = [-4 + r, -3 + r] \) and \(Rt = [-2 + t, -1 + t] \), respectively. Then \(G \) and \(R \) are \(\alpha_{*} \)–dominated, but they are not \(\alpha_{*} \)–admissible.

Lemma 1.13 Let \((\mathcal{A}, d_{\theta})\) be an EbMS and \((\mathcal{P}(\mathcal{A}), H_{d_{\theta}})\) be an extended Hausdorff b-MS on \(\mathcal{P}(\mathcal{A}) \). Then, for all \(U, W \in \mathcal{P}(\mathcal{A}) \) and for each \(u \in U \) such that \(d_{\theta}(u, W) = d_{\theta}(u, h_{u}) \) where \(h_{u} \in W \), the following holds:

\[
H_{d_{\theta}}(U, W) \geq d_{\theta}(u, h_{u}).
\]

Proof If \(H_{d_{\theta}}(U, W) = \sup_{u \in U} d_{\theta}(u, W) \), then \(H_{d_{\theta}}(U, W) \geq d_{\theta}(u, h_{u}) \) for all \(u \in U \). Since \(W \) is a proximinal set, for any \(u \in \mathcal{A} \) there exists at least one element \(h_{u} \in W \) that provides the best approximation to \(u \) and satisfies \(d_{\theta}(u, W) = d_{\theta}(u, h_{u}) \). Now, we have \(H_{d_{\theta}}(U, W) \geq d_{\theta}(u, h_{u}) \).

One writes

\[
H_{d_{\theta}}(U, W) = \sup_{h \in W} d_{\theta}(U, h) \geq \sup_{u \in U} d_{\theta}(u, W) \geq d_{\theta}(u, h_{u}).
\]

Hence, it is proved.

We will now present the key findings of research.

2. Main results

Let \((\mathcal{A}, d_{\theta})\) be an EbMS with a function \(\theta: \mathcal{A} \times \mathcal{A} \to [1, \infty) \). Let \(S \) and \(T \) be two multi-maps from \(\mathcal{A} \) to \(\mathcal{P}(\mathcal{A}) \). Let \(g_{1} \in S(g_{0}) \) so that \(d_{\theta}(g_{0}, S(g_{0})) = d_{\theta}(g_{0}, g_{1}) \). Let \(g_{2} \in T(g_{1}) \) be such that \(d_{\theta}(g_{1}, T(g_{1})) = d_{\theta}(g_{1}, g_{2}) \). By following this process, we obtain a sequence of sets \(\{TS(g_{n})\} \) in \(\mathcal{A} \) where \(g_{2n+1} \in S(g_{2n}) \) such that \(g_{2n+2} \in T(g_{2n+1}) \) for all \(n \in \mathbb{N} \cup \{0\} \).

Also, \(d_{\theta}(g_{2n}, S(g_{2n})) = d_{\theta}(g_{2n}, g_{2n+1}) \) and \(d_{\theta}(g_{2n+1}, T(g_{2n+1})) = d_{\theta}(g_{2n+1}, g_{2n+2}) \), then \(\{TS(g_{n})\} \) is a sequence in \(\mathcal{A} \) produced by \(g_{0} \). We mean by \(x, y \in \{u\} \) that \(x = u \) and \(y = u \), define \(D_{\theta}(x, y) \) by
\[D_\theta(x, y) = \max \left\{ d_\theta(x, y), d_\theta(x, S(x)), d_\theta(y, T(y)), \frac{d_\theta(x, S(x))d_\theta(x, T(y))}{1 + d_\theta(x, y)} \right\}. \]

Theorem 2.1 Let \((A, d_\theta)\) be a complete EbMS with function \(\theta: A \times A \to [1, \infty)\). Let \(r > 0\), \(g_0 \in B_{d_\theta}(g_0, r) \subseteq A\), \(\alpha: A \times A \to [0, \infty)\) and \(S, T: A \to P(A)\) be semi \(\alpha_s\)-dominated multivalued mappings on \(B_{d_\theta}(g_0, r)\). Suppose there are \(\psi_\theta \in \psi\), a constant \(\tau > 0\), and \(F\) a strictly increasing function, such that the following conditions hold:

i) \(\tau + F(H_{d_\theta}(S(x), T(y))) \leq F(\psi_\theta(D_\theta(x, y)))\), \hspace{1cm} (2.1)

where \(x, y \in B_{d_\theta}(g_0, r) \cap \{TS(g_n)\}\), \(\alpha(x, y) > 1\) and \(H_{d_\theta}(S(x), T(y)) > 0\);

ii) \(\sum_{i=0}^{j} \psi_{\theta}^i(d_\theta(g_0, S(g_0))) \prod_{i=0}^{j} \theta((g_0, g_{i+1}) \leq r.\) \hspace{1cm} (2.2)

where \(\{TS(g_n)\}\) is a sequence in \(B_{d_\theta}(g_0, r)\), \(\alpha(g_n, g_{n+1}) \geq 1\), for all \(n \in \mathbb{N}\{0\}\) and \(\{TS(g_n)\} \to u \in B_{d_\theta}(g_0, r)\).

iii) (2.1) holds for \(x, y \in \{u\}\), either \(\alpha(g_n, u) \geq 1\) or \((u, g_n) \geq 1\), for all naturals.

Then, \(S, T\) have a mutual FP \(u \in B_{d_\theta}(g_0, r)\).

Proof Let \(\{TS(g_n)\}\) be a sequence. From (2.2), we obtain

\[d_\theta(g_0, g_1) \leq \sum_{i=0}^{j} \psi_{\theta}^i(d_\theta(g_0, S(g_0))) \prod_{i=0}^{j} \theta((g_0, g_{i+1}) \leq r.\]

This implies that \(g_1 \in B_{d_\theta}(g_0, r)\). Let \(g_2, \ldots, g_j \in B_{d_\theta}(g_0, r)\) for some \(j \in \mathbb{N}\). If \(j\) is odd, then \(j = 2i + 1\) for some \(i \in \mathbb{N}\). As \(S, T: A \to P(A)\) are semi \(\alpha_s\)-dominated maps on \(B_{d_\theta}(g_0, r)\), thus \(\alpha_s(g_{2i}, Sg_{2i}) \geq 1\). In addition, \(\alpha_s(g_{2i+1}, Tg_{2i+1}) \geq 1\). As \(\alpha_s(g_{2i}, Sg_{2i}) \geq 1\), this implies that \(\inf\{\alpha(g_{2i+1}, l): l \in Sg_{2i}\} \geq 1\) and \(g_{2i+1} \in Sg_{2i}\) with \(\alpha(g_{2i}, g_{2i+1}) \geq 1\). Now, by using Lemma 1.13, we have

\[\tau + F(d_\theta(g_{2i+1}, g_{2i+2})) \leq \tau + F(H_{d_\theta}(Sg_{2i}, Tg_{2i+1})) \leq F(\psi_\theta(D_\theta(g_{2i}, g_{2i+1}))), \]

\[\tau + F(d_\theta(g_{2i+1}, g_{2i+2})) \leq F \left(\max \left\{ d_\theta(g_{2i+1}, Tg_{2i+1}), \frac{d_\theta(g_{2i}, Sg_{2i})}{1 + d_\theta(g_{2i}, g_{2i+1})} \right\} \right), \]
If we get \(\max \{d_\theta(g_{2i}, g_{2i+1}), d_\theta(g_{2i+1}, g_{2i+2})\} = d_\theta(g_{2i+1}, g_{2i+2}) \), then
\[
\tau + F(d_\theta(g_{2i+1}, g_{2i+2})) \leq F\left(\psi_\theta(d_\theta(g_{2i+1}, g_{2i+2}))\right).
\]

Since \(F \) is strictly increasing, we have
\[
d_\theta(g_{2i+1}, g_{2i+2}) < \psi_\theta(d_\theta(g_{2i+1}, g_{2i+2})).
\]

This not true due to the fact \(\psi_\theta(u) < u \). So
\[
\max\{d_\theta(g_{2i}, g_{2i+1}), d_\theta(g_{2i+1}, g_{2i+2})\} = d_\theta(g_{2i}, g_{2i+1}).
\]

Hence, we have
\[
d_\theta(g_{2i+1}, g_{2i+2}) < \psi_\theta(d_\theta(g_{2i}, g_{2i+1})). \quad (2.3)
\]

As \(a_i(s_{g_{2i-1}}, S g_{2i-1}) \geq 1 \) and \(g_{2i} \in S g_{2i-1} \), \(\alpha(g_{2i-1}, S g_{2i}) \geq 1 \). Now, by applying Lemma 1.13, we get
\[
\tau + F(d_\theta(g_{2i}, g_{2i+1})) \leq \tau + F\left(H_{d_\theta}(S g_{2i-1}, T g_{2i})\right) \leq F\left(\psi_\theta(D_\theta(g_{2i-1}, g_{2i}))\right),
\]
\[
\tau + F(d_\theta(g_{2i}, g_{2i+1})) \leq F\left[\psi_\theta\left(\max\left\{d_\theta(g_{2i-1}, g_{2i}), \frac{d_\theta(g_{2i-1}, g_{2i}) d_\theta(g_{2i-1}, S g_{2i-1})}{1 + d_\theta(g_{2i-1}, S g_{2i-1})}, \frac{d_\theta(g_{2i}, g_{2i+1})}{1 + d_\theta(g_{2i-1}, g_{2i})}\right\}\right],
\]
\[
\leq F\left[\psi_\theta\left(\max\left\{d_\theta(g_{2i-1}, g_{2i}), d_\theta(g_{2i-1, g_{2i}}), \frac{d_\theta(g_{2i-1}, g_{2i}) d_\theta(g_{2i-1, g_{2i}})}{1 + d_\theta(g_{2i-1}, g_{2i})}\right\}\right],
\]
\[
\leq F\left[\psi_\theta\left(\max\{d_\theta(g_{2i-1}, g_{2i}), d_\theta(g_{2i}, g_{2i+1})\}\right)\right].
\]

If \(\max\{d_\theta(g_{2i-1}, g_{2i}), d_\theta(g_{2i}, g_{2i+1})\} = d_\theta(g_{2i}, g_{2i+1}) \), then
\[
\tau + F(d_\theta(g_{2i}, g_{2i+1})) \leq F\left(\psi_\theta(d_\theta(g_{2i}, g_{2i+1}))\right).
\]

Since \(F \) is strictly increasing, we have
\[d_\theta(g_{2i}, g_{2i+1}) < \psi_\theta(d_\theta(g_{2i}, g_{2i+1})). \]

This is a contradiction due to the fact \(\psi_\theta(u) < u \). Hence, we get
\[d_\theta(g_{2i}, g_{2i+1}) < \psi_\theta(d_\theta(g_{2i-1}, g_{2i})). \]
(2.4)

As \(\psi_\theta \) is non-decreasing,
\[\psi_\theta(d_\theta(g_{2i}, g_{2i+1})) < \psi_\theta(\psi_\theta(d_\theta(g_{2i-1}, g_{2i}))). \]

By using above inequality in (2.3), we deduce that
\[d_\theta(g_{2i+1}, g_{2i+2}) < \psi_\theta^2(d_\theta(g_{2i-1}, g_{2i})). \]

Ongoing this process, we get,
\[d_\theta(g_{2i+1}, g_{2i+2}) < \psi_\theta^{2k+1}(d_\theta(g_0, g_1)). \]
(2.5)

Instead if \(j = 2k \), where \(k = 1, 2, 3, \ldots, \frac{j}{2} \), by following the same procedure and using (2.4), we get the given inequality as
\[d_\theta(g_{2i+1}, g_{2i+2}) < \psi_\theta^{2k}(d_\theta(g_0, g_1)). \]
(2.6)

Now, (2.5) and (2.6) collectively expressed as
\[d_\theta(g_j, g_{j+1}) < \psi_\theta^j(d_\theta(g_0, g_1)) \text{ for all } j \in \mathbb{N}. \]
(2.7)

Now, by using triangular inequality of \(EbMS \) also using (2.7), we have
\[d_\theta(g_0, g_{j+1}) \leq \theta(g_0, g_{j+1})d_\theta(g_0, g_1) + \theta(g_0, g_{j+1})\theta(g_1, g_{j+1})d_\theta(g_1, g_2) \]
\[+ \cdots + \theta(g_0, g_{j+1})\theta(g_2, g_{j+1})\theta(g_3, g_{j+1}) \cdots \theta(g_{j-1}, g_{j+1})\theta(g_j, g_{j+1})d_\theta(g_j, g_{j+1}), \]
\[d_\theta(g_0, g_{j+1}) \leq d_\theta(g_0, g_1)\theta(g_0, g_{j+1}) \cdots \theta(g_{j-4}, g_{j+1})\theta(g_{j-2}, g_{j+1}) \psi_\theta + \cdots + \]
\[+ \theta(g_0, g_{j+1})\theta(g_1, g_{j+1}) \cdots \theta(g_{j-3}, g_{j+1})\theta(g_{j-2}, g_{j+1})\psi_\theta^j \]
\[d_\theta(g_0, g_{j+1}) \leq \sum_{i=0}^{j} \psi_\theta^i(d_\theta(g_0, S(g_0))) \prod_{i=0}^{j} \theta((g_0, g_{i+1}) \leq r. \]
Thus, $g_{j+1} \in \overline{B_d(g_0,r)}$. Hence, $g_n \in \overline{B_d(g_0,r)}$ for all $n \in \mathbb{N}$. Consequently, the sequence

$\{TS(g_n)\} \to u \in \overline{B_d(g_0,r)}$. As $S,T: A \to P(A)$ are semi α_*-dominated maps on $\overline{B_d(g_0,r)}$, thus $\alpha_*(g_{2n}, Sg_{2n}) \geq 1$ and $\alpha_*(g_{2n+1}, Tg_{2n+1}) \geq 1$. This implies that $\alpha (g_n, g_{n+1}) \geq 1$ for all $n \epsilon \in \mathbb{N} \cup \{0\}$. Now, the inequality (2.7) can be written as

$$d_\theta (g_n, g_{n+1}) < \psi^n_\theta (d_\theta (g_0, g_1)) \text{ for all } n \in \mathbb{N}. \quad (2.8)$$

By using the triangular inequality of the $EbMS$ and (2.8), for $m > n$, we deduce that

$$d_\theta (g_n, g_m) \leq \theta(g_n, g_m)\psi^n_\theta (d_\theta (g_0, g_1)) + \theta(g_n, g_m)\theta(g_{n+1}, g_m)\psi^{n+1}_\theta (d_\theta (g_0, g_1)) + \cdots + \theta(g_n, g_m)\theta(g_{n+1}, g_m)\theta(g_{n+2}, g_m) \cdots \theta(g_{m-2}, g_m)\theta(g_{m-1}, g_m)\psi^{m-1}_\theta (d_\theta (g_0, g_1)), \quad (2.9)$$

$$d_\theta (g_n, g_m) \leq d_\theta (g_0, g_1)[\theta(g_1, g_m)\theta(g_2, g_m) \cdots \theta(g_{n-1}, g_m)\theta(g_n, g_m)\psi^n_\theta \theta(g_1, g_m)\theta(g_2, g_m) \cdots \theta(g_{n-1}, g_m)\theta(g_n, g_m)\psi^{n+1}_\theta \cdots + \theta(g_1, g_m)\theta(g_2, g_m) \cdots \theta(g_{n-1}, g_m)\theta(g_n, g_m)\psi^{m-1}_\theta].$$

Since $\lim_{n,m \to \infty} \theta(g_n, g_m)\psi^n_\theta < 1$, the series $\sum_{n=0}^{\infty} \psi^n_\theta \prod_{i=1}^{n} \theta(g_i, g_m)$ converges for all $m \in \mathbb{N}$, by applying the ratio test, put

$$\Omega = \sum_{n=1}^{\infty} \psi^n_\theta \prod_{i=1}^{n} \theta(g_i, g_m), \quad \Omega_n = \sum_{j=1}^{n} \psi^j_\theta \prod_{i=1}^{j} \theta(g_i, g_m). \quad \Omega_{\infty} = \sum_{n=1}^{\infty} \psi^n_\theta \prod_{i=1}^{n} \theta(g_i, g_m).$$

Therefore for $m > n$, the inequality mentioned above implies that

$$d_\theta (g_n, g_m) \leq d_\theta (g_0, g_1)[\Omega_{m-1} - \Omega_n].$$

Letting $n \to \infty$, we achieve that the sequence $\{TS(g_n)\}$ is Cauchy in $(\overline{B_d(g_0,r)}, d_\theta)$. As $\overline{B_d(g_0,r)}$ is a subspace of a complete EbM, hence, $\overline{B_d(g_0,r)}$ is also complete, and so there exists a limit point u in $\overline{B_d(g_0,r)}$ such that the sequence $\{TS(g_n)\}$ converges to u when $n \to \infty$, that is,

$$\lim_{n \to \infty} d_\theta (g_n, u) = 0. \quad (2.9)$$
Now, by using Lemma 1.13 and triangular inequality of EbMS, one writes
\[
d_\theta(u, Tu) \leq \theta(u, Tu)[d_\theta(u, g_{2n+1}) + d_\theta(g_{2n+1}, Tu)] \\
\leq \theta(u, Tu)d_\theta(u, g_{2n+1}) + \theta(u, Tu)H_{d_\theta}(S g_{2n}, Tu).
\]
By supposition, \(\alpha(g_n, u) \geq 1\). Assume that \(d_\theta(u, Tu) > 0\), then there exists a positive integer \(s\) so that \(d_\theta(g_n, Tu) > 0\) for all \(n \geq s\). For \(n \geq s\), we have
\[
d_\theta(u, Tu) < \theta(u, Tu) \left[d_\theta(u, g_{2n+1}) + \psi_{\theta}\left(\max\left\{ \frac{d_\theta(g_{2n}, u), d_\theta(g_{2n}, S g_{2n}), d_\theta(u, Tu)}{1 + d_\theta(g_{2n}, u)} \right\} \right) \right].
\]
Letting \(n \to \infty\), and applying the inequality (2.9), we obtain
\[
d_\theta(u, Tu) < \theta(u, Tu)\psi_{\theta}(d_\theta(u, Tu)) < d_\theta(u, Tu).
\]
This leads to a contradiction. Consequently, our assumption is false. Therefore, \(d_\theta(u, Tu) = 0\) and so \(u \in Tu\). Furthermore, using Lemma 1.13 and (2.9) we can prove that \(u \in Su\). Hence, \(S\) and \(T\) have a common multi FP \(u\) in \(\overline{B_{d_\theta}(g_0, r)}\).

Theorem 2.2 Let \((\mathcal{A}, d_\theta)\) be a complete EbMS with a function \(\theta: \mathcal{A} \times \mathcal{A} \to [1, \infty)\) and \(S: \mathcal{A} \to \mathcal{P}(\mathcal{A})\) be a multi-map. Suppose that for some \(\psi_{\theta} \in \Psi\) with constant \(\tau > 0\) and \(\mathcal{F}\) a strictly increasing function satisfying the following:
\[
\tau + \mathcal{F}(H_{d_\theta}(S(x), S(y))) \leq \mathcal{F}(\psi_{\theta}(D_{\theta}(x, y))), \quad (2.10)
\]
where \(x, y \in \{TS(g_n)\}\) and \(H_{\theta}(S(x), T(y)) > 0\). Then, \(\{TS(g_n)\} \to u \in \mathcal{A}\) and \(S\) has a common FP \(u\) in \(\mathcal{A}\).

Definition 2.3 Let \(\mathcal{A}\) be a non-empty set, \(\leq\) be a partial order on \(\mathcal{A}\) and \(G \subseteq \mathcal{A}\). We assume that \(y \leq L\) for each \(x \in L\), we have \(y \leq x\). Functions \(S, T: \mathcal{A} \to \mathcal{P}(\mathcal{A})\) are said dominated on \(G\) if \(y \leq Sy\) and \(Ty\) for all \(y \in G \subseteq \mathcal{A}\). If \(G = \mathcal{A}\), then \(S, T: \mathcal{A} \to \mathcal{P}(\mathcal{A})\) are totally dominated.

Now, we present the result for a hybrid coupled multivalued dominated maps on \(\overline{B_{d_\theta}(g_0, r)}\) in a complete EbMS.
Theorem 2.4 Let \((\mathcal{A}, \leq, d_\theta)\) be an ordered complete EbMS with a function \(\theta: \mathcal{A} \times \mathcal{A} \to [1, \infty)\). Let \(r > 0\), \(g_0 \in \overline{B_{d_\theta}(g_0, r)} \subseteq \mathcal{A}\) and \(S, T: \mathcal{A} \to \mathcal{P}(\mathcal{A})\) be multi dominated mappings on \(\overline{B_{d_\theta}(g_0, r)}\). Suppose that there are \(\psi_\theta \in \psi\), a constant \(\tau > 0\), and a strictly increasing function \(F\) satisfying the following:

\[\tau + F(H_{d_\theta}(S(x), T(y))) \leq F(\psi_\theta(D_\theta(x, y))), \tag{2.11} \]

where \(x, y \in \overline{B_{d_\theta}(g_0, r)} \cap \{TS(\gamma_n)\}\), \(y \leq x\) and \(H_{d_\theta}(S(x), T(y)) > 0\);

\[\sum_{i=0}^{\infty} \psi_\theta^i(d_\theta(g_0, S(\gamma_i))) \prod_{i=0}^{\infty} \theta(g_0, g_{i+1}) \leq r. \tag{2.12} \]

where \(\{TS(\gamma_n)\}\) is a sequence in \(\overline{B_{d_\theta}(g_0, r)}\) for all \(n \in \mathbb{N} \cup \{0\}\) and \(\theta > 1\). Then, \(\{TS(\gamma_n)\} \to u \in \overline{B_{d_\theta}(g_0, r)}\). Also, if (2.11) holds for \(x, y \in \{u\}\), either \(g_n \leq u\) or \(u \leq g_n\) for all naturals, then, \(S, T\) have a mutual FP \(u\) in \(\overline{B_{d_\theta}(g_0, r)}\).

Proof Let \(\alpha: \mathcal{A} \times \mathcal{A} \to [0, +\infty)\) be a map defined by \(\alpha(x, y) = 1\) for each \(x \in \overline{B_{d_\theta}(g_0, r)}\), \(x \leq y\) and \(\alpha(x, y) = 0\) otherwise. \(S\) and \(T\) are multi dominated maps on \(\overline{B_{d_\theta}(g_0, r)}\), so \(x \leq S(x)\) and \(y \leq T(y)\) for every \(x \in \overline{B_{d_\theta}(g_0, r)}\). This shows that \(x \leq z\) for each \(z \in S(x)\) and \(x \leq p\) for each \(p \in T(y)\). So, \(\alpha(x, z) = 1\) for every \(z \in S(x)\) and \(\alpha(x, p) = 1\) for each \(p \in T(y)\). This signifies that \(\inf[\alpha(x, y): y \in S(x)] = 1\) and \(\inf[\alpha(x, y): y \in T(y)] = 1\). So, \(\alpha_\ast(x, S(x)) = 1\), \(\alpha_\ast(x, T(y)) = 1\) for every \(x \in \overline{B_{d_\theta}(g_0, r)}\). So, \(S, T: \mathcal{A} \to \mathcal{P}(\mathcal{A})\) are \(\alpha_\ast\)-dominated multi maps on \(\overline{B_{d_\theta}(g_0, r)}\). Moreover, (2.12) can be written as

\[\tau + F(H_{d_\theta}(S(x), T(y))) \leq F(\psi_\theta(D_\theta(x, y))), \]

for all \(x, y \in \overline{B_{d_\theta}(g_0, r)} \cap \{TS(\gamma_n)\}\), \(\alpha(x, y) \geq 1\). Also inequality (2.11) holds. Then from Theorem 2.1, we have \(\{TS(\gamma_n)\}\) is a sequence in \(\overline{B_{d_\theta}(g_0, r)}\) and \(\{TS(\gamma_n)\} \to u \in \overline{B_{d_\theta}(g_0, r)}\). Now, \(g_n, u \in \overline{B_{d_\theta}(g_0, r)}\) and either \(g_n \leq u\) or \(u \leq g_n\) signifies that either \(\alpha(g_n, u) \geq 1\) or \(\alpha(u, g_n) \geq 1\). Consequently, all conditions of Theorem 2.1 hold. Hence, both the maps \(S\) and \(T\) have a
common multi FP u in $B_{d_{\theta}}(g_0, r)$.

We left with the result without using the condition of closed balls in an ordered complete $EbMS$. In the upcoming result, by using single multi-maps which are only defined on the whole space instead on a closed ball, we present the given result.

Theorem 2.5 Let $(\mathcal{A}, \leq, d_{\theta})$ be an ordered complete $EbMS$ with a function $\theta: \mathcal{A} \times \mathcal{A} \to [1, \infty)$. Let $S, T: \mathcal{A} \to \mathcal{P}(\mathcal{A})$ be the multi dominated maps on \mathcal{A}. Suppose that there are $\psi_{\theta} \in \psi$, a constant $\tau > 0$ and \mathcal{F} a strictly increasing function satisfying the following:

$$\tau + \mathcal{F}(H_{d_{\theta}}(S(x), T(y))) \leq \mathcal{F}(\psi_{\theta}(D_{\theta}(x, y))),$$

(2.13)

where $x, y \in \{TS(g_n)\}$, $y \leq x$. Then, for all $n \in \mathbb{N} \cup \{0\}$, $\{TS(g_n)\} \to u \in \mathcal{A}$. If (2.13) sustains for u and either $g_n \leq u$ or $u \leq g_n$ for all naturals, then, u is the mutual FP of S, T.

Example 2.6 Let $A = \mathbb{R}^+ \cup \{0\}$ and $d_{\theta}: A \times A \to [0, \infty)$ be a complete $EbMS$ defined as

$$d_{\theta}(x, y) = (x - y)^2$$

for all $x, y \in A$, where $\theta: A \times A \to [1, \infty)$ is given as $\theta(x, y) = 2 > 1$. Define $S, T: A \times A \to \mathcal{P}(A)$ by

$$S(k) = \begin{cases} \left[\frac{k}{3}, \frac{2k}{3}\right] & \text{if } k \in \left[0, \frac{13}{3}\right] \cap A \\ \left[k, k + 1\right] & \text{if } k \in \left(\frac{13}{3}, \infty\right) \cap A \end{cases},$$

and

$$T(w) = \begin{cases} \left[\frac{w}{4}, \frac{3w}{4}\right] & \text{if } w \in \left[0, \frac{13}{3}\right] \cap A \\ \left[w + 1, w + 3\right] & \text{if } w \in \left(\frac{13}{3}, \infty\right) \cap A \end{cases},$$

Suppose that $k_0 = \frac{1}{3}$ and $r = 16$, then $B_{d_{\theta}}(k_0, r) = \left[0, \frac{13}{3}\right] \cap A$. Now, we define $d_{\theta}(k_0, S(k_0)) = d_{\theta}\left(\frac{1}{3}, \left[\frac{1}{9}, \frac{2}{9}\right]\right) = d_{\theta}\left(\frac{1}{3}, \frac{1}{9}\right) = \frac{4}{81}$. By doing so, we derive a sequence $\{TS(k_n)\} = \left\{\frac{1}{3}, \frac{1}{9}, \frac{1}{36}, \ldots\right\}$ in A generated by k_0. Let $\psi_{\theta}(t) = \frac{4}{5}t$ and $a = 1$. Define $a: A \times A \to [0, \infty)$ by

$$a(k, w) = \begin{cases} 1 & \text{if } k > w \\ \frac{1}{2} & \text{otherwise.} \end{cases}$$

Now if $k, w \in B_{d_{\theta}}(k_0, r) \cap \{TS(k_n)\}$ with $a(k, w) \geq 1$, we have

$$H_{d_{\theta}}(S(k), T(w)) = \max\left\{\sup_{a \in S(k)} d_{\theta}(a, T(w)), \sup_{b \in T(w)} d_{\theta}(S(k), b)\right\},$$
Theorem 3.2 Let (A, d_θ) be a complete EbMS with a function $\theta: A \times A \to [1, \infty)$. Let $r > 0, f_0 \in E_b(M(S(k, T(w))))$. Let $\tau + F(H_d_\theta(S(k), T(w))) \leq F(\psi_\theta(D_\theta(k, w)))$.

Note $\alpha(6,5) \geq 1$. But, we get

$\tau + F(H_d_\theta(S(6), T(5))) > F(\psi_\theta(D_\theta(k, w)))$.

So condition (2.1) is not fulfilled on A. Furthermore, for all $i \in \mathbb{N}\cup\{0\},$

$$
\sum_{i=0}^{j} \psi_\theta^i (d_\theta(g_0, S(g_0))) \prod_{i=0}^{j} \theta((g_0, g_{i+1}) = \frac{4}{81} \times 2 \sum_{i=0}^{n} \left(\frac{4}{5}\right)^i < 16 \leq r.
$$

Hence, S and T satisfy all the restrictions of Theorem 2.1 for $k, w \in B_{d_\theta}(k_0, r) \cap \{TS(k_n)\}$

with $\alpha(k, w) \geq 1$. Therefore S, T have a mutual FP.

3. Results for graph theory

Existence of FP results for multi graph dominated mappings of Theorem 2.1 will be demonstrated in this section. In a metric space with a graph, Jachymski [21] obtained a significant conclusion regarding the contraction mappings. FP results for graph contractions were reported by Hussain et al. [14], Rasham et al. [37, 38].

Definition 3.1 Let $\mathcal{A} \neq \{\emptyset\}$ and $G = (E(G), C(G))$ be a graph so that $V(G) = \mathcal{A}, B \subseteq \mathcal{A}$. A multi-map $S: \mathcal{A} \to P(\mathcal{A})$ is said as a multi graph dominated on B if $(x, y) \in C(G)$, for each $y \in S(x)$ and $y \in \mathcal{A}$.

Theorem 3.2 Let (A, d_θ) be a complete EbMS with a function $\theta: A \times A \to [1, \infty)$. Let $r > 0, f_0 \in \mathbb{R}$. Then

$$
\sup_{x \in S(x)} d_\theta(x, y) \leq \sup_{y \in S(y)} d_\theta(y, z) \leq \sup_{z \in S(z)} d_\theta(z, t)
$$

where $x, y, z, t \in A$. Therefore S and T have a mutual FP.

This means for $\tau \in (0, \frac{12}{95}]$ and for a strictly increasing function $F(s) = \ln s$, we have

$\tau + F(H_d_\theta(S(k), T(w))) \leq F(\psi_\theta(D_\theta(k, w)))$.

Note $\alpha(6,5) \geq 1$. But, we get

$\tau + F(H_d_\theta(S(6), T(5))) > F(\psi_\theta(D_\theta(k, w)))$.

So condition (2.1) is not fulfilled on A. Furthermore, for all $i \in \mathbb{N}\cup\{0\},$

$$
\sum_{i=0}^{j} \psi_\theta^i (d_\theta(g_0, S(g_0))) \prod_{i=0}^{j} \theta((g_0, g_{i+1}) = \frac{4}{81} \times 2 \sum_{i=0}^{n} \left(\frac{4}{5}\right)^i < 16 \leq r.
$$

Hence, S and T satisfy all the restrictions of Theorem 2.1 for $k, w \in B_{d_\theta}(k_0, r) \cap \{TS(k_n)\}$

with $\alpha(k, w) \geq 1$. Therefore S, T have a mutual FP.
Numerous authors have utilized distinct generalized contractions in various distance spaces to

\[B_{d_{\theta}}(f_0, r) \subseteq A. \]
Suppose the following restrictions are fulfilled:

(i) \(S, T : A \to P(A) \) are multi-graph dominated maps on \(B_{d_{\theta}}(f_0, r) \cap \{TS(f_n)\} \).

(ii) There exist \(\tau > 0 \) and a strictly increasing function \(\mathcal{F} \) satisfying the following:

\[\tau + \mathcal{F}(H_{d_{\theta}}(S(x), T(y))) \leq \mathcal{F}(\psi_{\partial}(D_{\theta}(x, y))), \]

where \(x, y \in B_{d_{\theta}}(f_0, r) \cap \{TS(f_n)\}, (x, y) \in \mathcal{C}(G) \) and \(H_{d_{\theta}}(S(x), T(y)) > 0 \).

(iii) \(\sum_{i=0}^{l} \psi_{\partial}^{l}(d_{\theta}(g_{0}, S(g_{0}))) \prod_{i=0}^{l} \tau((g_{0}, g_{l+1}) \leq \tau, \) \(\mathcal{F}(\psi_{\partial}(D_{\theta}(x, y))) \]

where \(\{TS(f_n)\} \) is a sequence in \(B_{d_{\theta}}(f_0, r) \), for each \(n \in \mathbb{N} \cup \{0\} \).

Then \(\{TS(f_n)\} \to u \in B_{d_{\theta}}(f_0, r) \), where \((f_n, f_{n+1}) \in \mathcal{C}(G) \) and \((f_n, f_{n+1}) \in \{TS(f_n)\} \). Moreover, if (3.1) is fulfilled for \(x, y \in \{u\} \) either \((f_n, u) \in \mathcal{C}(G) \) or \((u, f_n) \in \mathcal{C}(G) \) for every \(n \in \mathbb{N} \cup \{0\} \), then, \(S \) and \(T \) have a mutual FP \(u \) in \(B_{d_{\theta}}(f_0, r) \).

Proof Define \(\alpha : A \times A \to [0, \infty) \) by

\[\alpha(x, y) = \begin{cases} 1, & \text{if } x \in B_{d_{\theta}}(f_0, r)(x, y) \in \mathcal{C}(G) \\ 0, & \text{otherwise}. \end{cases} \]

The mappings \(S \) and \(T \) are semi graph dominated on \(B_{d_{\theta}}(f_0, r) \), then for \(x \in B_{d_{\theta}}(f_0, r), (x, y) \in \mathcal{C}(G) \) for every \(y \in S(x) \) and \((x, y) \in \mathcal{C}(G) \) for each \(y \in T(y) \). So, \(\alpha(x, y) = 1 \) for every \(y \in S(x) \) and \(\alpha(x, y) = 1 \) for every \(y \in T(y) \). This means that \(\inf \{ \alpha(x, y) : y \in S(x) \} = 1 \) and \(\inf \{ \alpha(x, y) : y \in T(y) \} = 1 \). Therefore, \(\alpha_{x}, x, S(x) = 1 \) and \(\alpha_{x}, x, T(x) = 1 \) for each \(x \in \overline{B_{d_{\theta}}(f_0, r)} \). So, \(S, T : A \to P(A) \) are \(\alpha_{x} \)-dominated maps on \(B_{d_{\theta}}(f_0, r) \). Now, (3.1) can be expressed as

\[\tau + \mathcal{F}(H_{d_{\theta}}(S(x), T(y))) \leq \mathcal{F}(\psi_{\partial}(\max \{d_{\theta}(x, y), d_{\theta}(x, S(x)), d_{\theta}(y, T(y)), \frac{d_{\theta}(x(S(x)))}{1+d_{\theta}(x, y)} \})), \]

whenever \(x, y \in B_{d_{\theta}}(f_0, r) \cap \{TS(f_n)\} \), \(\alpha(x, y) \geq 1 \) and \(H_{d_{\theta}}(S(x), T(y)) \geq 0 \). Also, (iii) holds.

Now, \((f_n, u) \in \overline{B_{d_{\theta}}(f_0, r)} \) and \((f_n, u) \in \mathcal{C}(G) \) or \((u, f_n) \in \mathcal{C}(G) \) such that \(\alpha(f_n, u) \geq 1 \) or \(\alpha(u, f_n) \geq 1 \). So, all the restrictions of Theorem 2.1 are fulfilled. Hence, by means of Theorem 2.1, \(S, T \) have a mutual FP \(u \) in \(\overline{B_{d_{\theta}}(f_0, r)} \) and \(d_{\theta}(u, u) = 0 \).

4. Application to integral equations

Numerous authors have utilized distinct generalized contractions in various distance spaces to
establish conditions that are both required and enough for a range of linear and nonlinear integrals including Volterra types within the framework of FP theory. To access more up-to-date FP results that incorporate applications of integral inclusions, please refer to the following references ([4,7, 17, 30, 31, 36]).

Theorem 4.1 Let \((\mathcal{A}, d_\theta) \) be a complete EbMS with a function \(\theta: \mathcal{A} \times \mathcal{A} \rightarrow [1, \infty) \). Let \(S, T: \mathcal{A} \rightarrow \mathcal{A} \) be self-mappings. Suppose there are \(\psi_\theta \in \psi \), constant \(\tau > 0 \), and a strictly increasing function, such that

\[
\tau + \mathcal{F}(H_\theta(S(x), T(y))) \leq \mathcal{F}(\psi_\theta(D_\theta(x, y))),
\]

where \(x, y \in \{TS(g_n)\} \) and \(H_\theta(S(x), T(y)) > 0 \). Then, \(\{TS(g_n)\} \rightarrow u \in \mathcal{A} \) for all \(n \in \mathbb{N}\cup\{0\} \).

Likewise if (4.1) sustains for \(u \), then \(u \) becomes the FP of \(S \) and \(T \) in \(\mathcal{A} \).

Proof The proof of Theorem 4.1 is equivalent to the proof of Theorem 2.1, stated in different terms.

In this section, we demonstrate the utilization of Theorem 2.1 by showcasing its application in the context of Volterra-type integral equations

\[
g(k) = \int_0^k H_1(k, h, g(h))dh,
\]

\[
p(k) = \int_0^k H_2(k, h, p(h))dh,
\]

for each \(k \in [0,1] \). To solve (4.2) and (4.3), let \(\mathcal{A} \) denote the collection of continuous functions defined on the closed interval \([0,1] \) to non-negative real numbers, denoted by \(\mathcal{C}([0,1], \mathbb{R}_+) \). We describe the norm for \(g \in \mathcal{C}([0,1], \mathbb{R}_+) \) as \(\|g\|_\tau = \sup_{k \in [0,1]} \|g(k)\|e^{-\tau k} \), wherever \(\tau > 0 \) is chosen arbitrary. Define

\[
d_\theta(g, p) = [\sup_{k \in [0,1]} \|g(k) - p(k)\|e^{-\tau k}]^2 = \|g - p\|_\tau^2
\]

for each \(p \in \mathcal{C}([0,1], \mathbb{R}_+) \). The space \(\mathcal{C}([0,1], \mathbb{R}_+, d_\theta) \) attains the completeness and satisfies the conditions of a complete EbMS.

Now, we will prove this theorem to derive a solution of integral equations (4.2) and (4.3).

Theorem 4.2 Suppose that the given assumptions hold:

(i) \(H_1, H_2: [0,1] \times [0,1] \times \mathcal{C}[0,1], \mathbb{R}_+ \rightarrow \mathbb{R} \);

(ii) Define \(S, T: \mathcal{C}[0,1], \mathbb{R}_+ \rightarrow \mathcal{C}[0,1], \mathbb{R}_+ \) by

\[
S(k) = \int_0^k H_1(k, h, g(h))dh,
\]

\[
T(k) = \int_0^k H_2(k, h, p(h))dh,
\]
\[T(k) = \int_0^k H_2 \left(k, \hat{a}, p(\hat{a}) \right) d\hat{a}. \]

Assume there exists \(\tau > 0 \) such that

\[|H_1(k, \hat{a}, g(\hat{a})) - H_2(k, \hat{a}, p(\hat{a}))| \leq \frac{\tau M(g,p)}{\sqrt{\|M(g,p)\|_\tau + 1}^2} \]

for each \(k, \hat{a} \in [0,1] \) and \(g, p \in C([0,1], \mathbb{R}_+) \), where

\[M(g(\hat{a}), p(\hat{a})) = \sup \left\{ \psi_\theta \left(\left[\frac{[|g(\hat{a}) - p(\hat{a})|^2, [|g(\hat{a}) - S(\hat{a})|^2], [|g(\hat{a}) - T(\hat{a})|^2]}{1 + [|g(\hat{a}) - p(\hat{a})|^2} \right) \right\}. \]

Then (4.2) and (4.3) have a unique solution.

Proof: By supposition (ii), one writes

\[|S(k) - T(k)| \leq \int_0^k |H_1(k, \hat{a}, g(\hat{a})) - H_2(k, \hat{a}, p(\hat{a}))| d\hat{a}, \]

\[\leq \int_0^k \frac{\tau M(g,p)e^{-\tau k}e^{\tau \hat{a}}}{\sqrt{\|M(g,p)\|_\tau + 1}^2} d\hat{a}, \]

\[\leq \frac{\tau (M(g,p))}{\sqrt{\|M(g,p)\|_\tau + 1}^2} \int_0^k e^{\tau \hat{a}} d\hat{a}, \]

\[\leq \frac{\|M(g,p)\|_\tau e^{\tau k}}{\sqrt{\|M(g,p)\|_\tau + 1}^2}. \]

That is,

\[|S(k) - T(k)|e^{-\tau k} \leq \frac{\|M(g,p)\|_\tau}{\sqrt{\|M(g,p)\|_\tau + 1}^2} \]

\[\|S(k) - T(k)\|_\tau \leq \frac{\|M(g,p)\|_\tau}{\sqrt{\|M(g,p)\|_\tau + 1}^2}. \]

Taking square root on both sides,

\[\sqrt{\|S(k) - T(k)\|_\tau^2} \leq \frac{\sqrt{\|M(g,p)\|_\tau}}{\sqrt{\|M(g,p)\|_\tau + 1}^2}, \]

\[\sqrt{\|S(k) - T(k)\|_\tau} \leq \frac{\sqrt{\|M(g,p)\|_\tau}}{\sqrt{\|M(g,p)\|_\tau + 1}}, \]

\[\frac{\tau \sqrt{\|M(g,p)\|_\tau + 1}}{\sqrt{\|M(g,p)\|_\tau}} \leq \frac{1}{\sqrt{\|S(k) - T(k)\|_\tau}}, \]

\[\tau + \frac{1}{\sqrt{\|M(g,p)\|_\tau}} \leq \frac{1}{\sqrt{\|S(k) - T(k)\|_\tau}}, \]

which shows that
\[\tau - \frac{1}{\sqrt{\|S(k) - T(k)\|_\tau}} \leq - \frac{1}{\sqrt{\|M(p,p)\|_\tau}} \]

Thus, all assumptions of Theorem 2.1 are met for \(F(g) = \frac{-1}{\sqrt{g}}, g > 0 \) and \(d_\theta(g,p) = \|g - p\|_\tau^2 \).

Consequently, (4.2) and (4.3) possess only one solution.

5. Application to functional equations

In dynamic programming, for the solution of functional equations we present an application in this section. Let \(P \) as well as \(Q \) be two Banach spaces, \(l \subseteq P, m \subseteq Q \) and

\[
\begin{align*}
 d_\theta &: l \times m \to l, \\
 h, v &: l \times m \to \mathbb{R}, \\
 S, T &: l \times m \times \mathbb{R} \to \mathbb{R}.
\end{align*}
\]

For more results on dynamic programming see ([37, 39]). Suppose that \(l \) and \(m \) appear for decisions spaces. The problem related to dynamic programming is to find out a result of the following equations:

\[
\begin{align*}
 f(\delta) &= \sup_{\varphi \in l} \left\{ h(\delta, \varphi) + S \left(\delta, \varphi, f(\delta, \varphi) \right) \right\}, \\
 g(\delta) &= \sup_{\varphi \in l} \left\{ v(\theta, \varphi) + T \left(\delta, \varphi, g(\delta, \varphi) \right) \right\},
\end{align*}
\]

for \(\delta \in l \). We want to show that (5.1) and (5.2) have a unique solution. Assume \(R(l) \) symbolizes the set of all positive valued functions on \(l \). Consider,

\[
 d_\theta(x, u) = \left[\sup_{\delta \in l} \left\{ |x(\delta) - u(\delta)| \right\} \right]^2 = \|x - u\|_\tau^2,
\]

for all \(x, u \in R(l) \). With this setting, \((R(l), d_\theta) \) becomes a complete \(EbMS \) with \(\theta(x, u) = 2 \). The following restrictions are assumed to verify the following:

(i) \(S, T, h \) and \(v \) are bounded.

(ii) For \(\delta \in l, u \in R(l) \), let \(G, H: R(l) \to R(l) \) be multi-maps, so that

\[
\begin{align*}
 Gx(\delta) &= \sup_{\varphi \in l} \left\{ h(\delta, \varphi) + S \left(\delta, \varphi, x(\delta, \varphi) \right) \right\}, \\
 Hx(\delta) &= \sup_{\varphi \in l} \left\{ v(\delta, \varphi) + T \left(\delta, \varphi, x(\delta, \varphi) \right) \right\}.
\end{align*}
\]

Suppose there exists \(\tau > 0 \), and for all \((\delta, \varphi) \in l \times m, u \in R(l), t \in l \) such that

\[
S(\delta, \varphi, x(t)) + T(\delta, \varphi, v(t)) \leq M(u, v) \left(e^{M(u, v)} - \left| P_{\varphi_1}(\delta) - A_{\varphi_2}(\delta) \right| - \tau \right),
\]

where
\[M(x, u) = \sup \left\{ \psi_\theta \left(\frac{[x(t) - u(t)]^2}{[x(t) - Gx(t)]^2}, \frac{[u(t) - Hu(t)]^2}{1 + [x(t) - u(t)]^2} \right) \right\}. \]

Theorem 5.1 Assume that (i), (ii), and (5.6) hold. Then, (5.1) and (5.2) have a distinctive, mutual and bounded solution in \(R(I) \).

Proof Take any \(c > 0 \). From (5.4) and (5.5), there are \(u_1, u_2 \in R(I) \), and \(\varphi_1, \varphi_2 \in m \) such that
\[Gu_1 < h(\delta, \varphi_1) + S(\delta, \varphi_1, u_1(d_\theta(\delta, \varphi_1))) + c, \]
\[Hu_2 < h(\delta, \varphi_2) + T(\delta, \varphi_2, u_2(d_\theta(\delta, \varphi_2))) + c. \]

By the definition of supremum, we obtain
\[Gu_1 < h(\delta, \varphi_1) + L(\delta, \varphi_1, u_1(d_\theta(\delta, \varphi_1))) \]
\[Hu_2 < h(\delta, \varphi_2) + M\left(\delta, \varphi_2, u_2(d_\theta(\delta, \varphi_2))\right) \]

Then, from (5.6), (5.7) and (5.10), we have
\[|Gu_1(\delta) - Hu_2(\delta)|^2 \leq e^{S(\delta, \varphi_1, u_1(d_\theta(\delta, \varphi_1))) - T(\delta, \varphi_2, u_2(d_\theta(\delta, \varphi_2)))}, \]
\[|Gu_1(\delta) - Hu_2(\delta)|^2 \leq M(x, u)\left(e^{M(x, u)} - |Gu_1(\delta) - Hu_2(\delta)|^2 - \tau\right) + c. \]

Since \(c > 0 \) is arbitrary, we obtain
\[|Gu_1(\delta) - Hu_2(\delta)|^2 \leq M(x, u)\left(e^{M(x, u)} - |Gu_1(\delta) - Hu_2(\delta)|^2 - \tau\right), \]
\[\frac{|Gu_1(\delta) - Hu_2(\delta)|^2}{M(x, u)} \leq e^{-\tau(\ln(e^{M(x, u)} - |Gu_1(\delta) - Hu_2(\delta)|^2))}. \]

That is,
\[e^{\tau} \cdot \frac{|Gu_1(\delta) - Hu_2(\delta)|^2}{M(x, u)} \leq e^{M(x, u)} \cdot e^{-|Gu_1(\delta) - Hu_2(\delta)|^2}. \]

Taking antilog on both sides,
\[\ln\left(e^{\tau} \cdot \frac{|Gu_1(\delta) - Hu_2(\delta)|^2}{M(x, u)}\right) \leq \ln\left(e^{M(x, u)} \cdot e^{-|Gu_1(\delta) - Hu_2(\delta)|^2}\right), \]
\[\ln e^{\tau} + \ln\left|\frac{|Gu_1(\delta) - Hu_2(\delta)|^2}{M(x, u)}\right| \leq \ln e^{M(x, u)} - \ln e^{-|Gu_1(\delta) - Hu_2(\delta)|^2}. \]

That is,
\[\tau + \ln\left|\frac{|Gu_1(\delta) - Hu_2(\delta)|^2}{M(x, u)}\right| \leq M(u, v) - |Gu_1(\delta) - Hu_2(\delta)|^2. \]

This implies that
\[\tau + \ln(|Gu_1(\delta) - Hu_2(\delta)|^2) + |Gu_1(\delta) - Hu_2(\delta)|^2 \leq \ln(M(x, u)) + M(x, u). \]

So, all the restrictions of Theorem 2.1 are fulfilled for \(F(v) = \ln(v^2 + v); v > 0 \) and \(d_\theta(x, u) = \).
\[\|x - u\|_r^2 . \] Therefore, \(G \) and \(H \) have a distinct, mutual and bounded solution of (5.1) and (5.2).

6. Conclusion

The aim of this research is to introduce new FP theorems for set-valued dominated mappings that satisfy the advanced nonlinear contractions in a complete \(EbMS \). Additionally, we establish novel FP results for a pair of dominated multi-functions on a closed ball that meets the conditions of generalized locally nonlinear contractions. Our study provides new and unique findings for dominated maps in an ordered complete \(EbMS \). We also propose a new concept of multi-graph dominated mappings on a closed ball in these spaces and present some new results for graphic contractions endowed with a graphic structure. We provide examples to validate our newly acquired outcomes, which demonstrate that contractive conditions hold only on a closed-ball and not on the whole space. Furthermore, we provide applications for nonlinear systems of integral equations and functional equations to illustrate the originality of our obtained outcomes. We have expanded and broadened the scope of various findings that have previously been reported in the literature. Our work builds upon and encompasses the contributions of several prior studies, including those conducted by Rasham et al. [35-39], Wordowski [42], Acar et al. [1], Altun et al. [8], Nashine et al. [30-31] as well as several established classical results [2, 5, 23, 26, 29, 40, 41]. In summary, our results provide a more comprehensive understanding of the topic at hand by incorporating and extending upon previous findings.

Acknowledgements

The authors are grateful to the research Institute of Research and Development of Processes IIDP, University of the Basque Country, Campus of Leioa, PO Box 48940, Leioa, Bizkaia 48940, Spain, for supporting this work.

Funding

This research received no external funding.

Availability of data and materials

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.
Competing interests
The authors affirm that they have no conflicts of interest to disclose.

Authors’ contributions
T. R and N. N trace out the problem to write this research manuscript. M. S observed novel results for set-valued dominated operators satisfying an advanced locally contraction and made little bit changes in application section of this article. R. P. A write the complete original draft for this article, H. A. review-writing and editing, T. R.; project administration, M. D. L. S; secured the funding acquisition. The final version of the manuscript has been thoroughly reviewed and approved by all authors.

Authors’ detail
a,b,cDepartment of Mathematics, University of PoonchRawalakot, Azad Kashmir, Pakistan;
dDepartment of Mathematics Texas A& M University-Kingsville 700 University Blvd., MSC 172 Kingsville, Texas 78363-8202 USA;
eUniversit’e de Sousse, Institut Superieur d’Informatique et des Techniques de Communication, H. Sousse 4000, Tunisia ;
fChina Medical University Hospital, China Medical University, Taichung 40402, Taiwan
gDepartment of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa ;
hInstitute of Research and Development of Processes IIDP, University of the Basque Country, Campus of Leioa, PO Box 48940, Leioa, Bizkaia 48940, Spain.

References

[31] H. K. Nashine, Z. Kadelburg, Cyclic generalized \(\phi\)-contractions in \(b\)-metric spaces and an
application to integral equations, Filomat, 28(10)(2014), 2047–2057.

