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ABSTRACT. We prove the boundedness and compactness for the iterated com-
mutators of the θ-type Calderón–Zygmund singular integral and its fractional
variant on the weighed Morrey spaces.

1. INTRODUCTION

The aim of this paper is to establish some new results focusing on the bound-
edness and compactness for the iterated commutators of the θ-type Calderón–
Zygmund singular integral and its fractional variant on the weighed Morrey spaces.
Let us recall some definitions and background. For 0≤α< n, the θ-type Calderón–
Zygmund integral operator TKα

is defined by

(1.1) TKα
( f )(x) =

ˆ
Rn

Kα(x,y) f (y)dy for x /∈ supp f

with kernel Kα satisfying the size condition

(1.2) |Kα(x,y)| ≤
CKα

|x− y|n−α

and a smoothness condition

(1.3) |Kα(x,y)−Kα(z,y)|+ |Kα(y,x)−Kα(y,z)| ≤ θ

( |x− z|
|x− y|

) 1
|x− y|n−α

,

for all |x−y|> 2|x− z|, where θ : [0,1]→ [0,∞) is a modulus of continuity, that is,
θ is a continuous, increasing, subadditive function with θ(0) = 0 and satisfies the
Dini condition

´ 1
0 θ(t)dt

t < ∞.
When α = 0, we denote TKα

= TK . If TK is bounded on L2(Rn), then TK is just
the θ-type Calderón–Zygmund operator. When α ∈ (0,1), the operator TKα

is the
θ-type fractional integral operator. Particularly, when θ(t) = tδ for some δ > 0, the
operator TK is the classical Calderón–Zygmund singular integral operator. It was
shown in [14, 15] that TK is bounded on Lp(w) for 1 < p < ∞ and w ∈ Ap(Rn).
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When α ∈ (0,1), we get from (1.2) that TKα
f ≤CKα

Iα| f |, where Iα is the classical
fractional integral operator defined by

Iα( f )(x) :=
ˆ
Rn

f (y)
|x− y|n−α

dy.

As an immediate consequence of the boundedness for Iα, we have that TKα
is

bounded from Lp(wp) to Lq(wq) for 1 < p < q < ∞, 1/q = 1/p−α/n and w ∈
Ap,q(Rn) (see the definition of Ap,q(Rn) in Section 2).

On the other hand, the investigation on the boundedness and compactness of the
commutators has been the subject of many recent papers in harmonic analysis. In
1976, Coifman, Rochberg and Weiss [5] first introduced the following commutator

[b,T ]( f )(x) = bT f (x)−T (b f )(x)

with suitable operator T and function b. More precisely, they established the Lp

boundedness for [b,T ] with T being Riesz transform for 1 < p < ∞ if and only
if b ∈ BMO(Rn). Later on, Uchiyama [22] improved the above result by show-
ing that [b,TΩ] with TΩ being rough singular integral operator with rough kernel
Ω ∈ Lip1(S

n−1) is bounded (resp., compact) on Lp(Rn) for all p ∈ (1,∞) if and
only if the symbol b ∈ BMO(Rn) (resp., b ∈ CMO(Rn)). Here CMO(Rn) is the
closure of C ∞

c (Rn) in the BMO(Rn) topology, which coincides with the space of
functions of vanishing mean oscillation. Since then, a considerable amount of
attention has been paid to study the boundedness and compactness for the commu-
tators of various operators. For examples, see [1,10,11] for the Lp boundedness of
the commutators of rough singular integral, [2,9,13,23,24] for the Lp compactness
of the commutators of various integral operators. Other interesting works related
to this topic are [20, 21, 25].

In this paper we focus on the commutators of the θ-type integral operators. More
precisely, let TKα

be defined in (1.1). For a locally integrable function b defined on
Rn, the commutator [b,TKα

] is given by

[b,TKα
]( f )(x) := b(x)TKα

( f )(x)−TKα
(b f )(x),

for suitable functions f . Let N = {0,1, . . .} and m ∈ N \ {0}. The m-th iterated
commutator (TKα

)m
b is defined by

(TKα
)m

b ( f ) := [b,(TKα
)m−1

b ]( f ), (TKα
)1

b( f ) := [b,TKα
]( f ).

For convenience, we denote (TKα
)m

b = TKα
when m= 0. Before stating some known

results, let us recall some definitions.

Definition 1.1 (BMO(Rn) space) ( [8]). The BMO(Rn) space is given by

BMO(Rn) := { f ∈ L1
loc(Rn) : ∥ f∥BMO(Rn) := ∥M♯ f∥L∞(Rn) < ∞},

where M♯ f is the sharp maximal function, i.e.

M♯ f (x) = sup
Q∋x

1
|Q|

ˆ
Q
| f (y)− fQ|dy,

where the supremum is taken over all cubes Q in Rn that contain the given point x.
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Definition 1.2 (Ap(Rn) weight) ( [18]). A weight is a nonnegative, locally inte-
grable function on Rn that takes values in (0,∞) almost everywhere. For 1< p<∞,
a weight w is said to be in the Muckenhoupt weight class Ap(Rn) if there exists a
positive constant C such that

(1.4) sup
Q cubes in Rn

( 1
|Q|

ˆ
Q

w(x)dx
)( 1

|Q|

ˆ
Q

w(x)1−p′dx
)p−1

≤C.

The smallest constant C in inequality (1.4) is the corresponding Ap constant of w,
which is denoted by [w]Ap .

Definition 1.3 (Ap,q(Rn) weight) ( [19]). Let 0 < α < n, 1 < p,q < ∞ and 1/q =
1/p−α/n. A weight w is said to be in the Muckenhoupt weight class Ap,q(Rn) if
there exists a positive constant C such that

(1.5) sup
Q cubes in Rn

( 1
|Q|

ˆ
Q

wq(x)dx
)( 1

|Q|

ˆ
Q

w−p′(x)dx
)q/p′

≤C.

The smallest constant C in inequality (1.5) is the corresponding Ap,q constant of w,
which is denoted by [w]Ap,q .

Very recently, Guo, Wu and Yang [9] showed that

Theorem A. ( [9]) Let 0 ≤ α < n, m ∈ N\{0}, 1 < p < q < ∞, 1/q = 1/p−α/n
and w ∈ Ap,q(Rn).

(i) If b ∈ BMO(Rn), then

∥(TKα
)m

b ( f )∥Lq(wq) ≤C∥b∥m
BMO(Rn)∥ f∥Lp(wp), ∀ f ∈ Lp(wp).

(ii) If b ∈ BMO(Rn), then (TKα
)m

b is a compact operator from Lp(wp) to Lq(wq).

The primary motivation of this note is to establish the corresponding results for
(TKα

)m
b on weighted Morrey spaces. Let us recall one definition.

Definition 1.1 (Weighted Morrey spaces). Let w,v be two weights on Rn. For
1 ≤ p < ∞ and 0 ≤ β < 1, the weighed Morrey space Mp,β(w,v) is defined as

Mp,β(w,v) := { f ∈ Lp
loc(w) : ∥ f∥Mp,β(w,v) < ∞},

where

∥ f∥Mp,β(w,v) := sup
B balls in Rn

( 1
v(B)β

ˆ
B
| f (x)|pw(x)dx

)1/p
,

where the supremum is taken over all balls in Rn.

This type of Morrey spaces was originally introduced by Komori and Shirai [12]
who established that the fractional maximal operator Mα with 0<α< n is bounded
from Mp,β(wp,wq) to Mq,qβ/p(wq), provided that 1 < p < q < ∞, 1/q = 1/p−α/n
and w ∈ Ap,q(Rn). When w = v, then Mp,β(w,v) reduces to the classical weighted
Morrey space Mp,β(w), which was also introduced by Komori and Shirai [12] who
established the boundedness for the Hardy-Littlewood maximal operator and the
Calderón-Zygmund singular integral operator on Mp,β(w). When w ≡ 1, the space
Mp,β(w) reduces to the classical Morrey space Mp,β(Rn), which was first intro-
duced by Morrey [17] to study the local behavior of solutions to second order
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elliptic partial differential equations. In 1991, Di Fazio and Ragusa [6] presented a
characterization of Mp,β(Rn) boundedness for [b,TΩ]. Since then, the characteriza-
tions of boundedness and compactness of [b,T ] on Morrey spaces Mp,β(Rn) have
been studied by many authors (see [3, 4, 7]).

In this paper we establish the following results.

Theorem 1.1. Let m∈N, 0≤α< n, 1< p< q<∞, 1/q= 1/p−α/n, 0≤ β< p/q
and w ∈ Ap,q(Rn).

(i) If b ∈ BMO(Rn), then

∥(TKα
)m

b ( f )∥Mq,qβ/p(wq) ≤C∥b∥m
BMO(Rn)∥ f∥Mp,β(wp,wq), ∀ f ∈ Mp,β(wp,wq).

(ii) If m ∈ N \ {0} and b ∈ BMO(Rn), then (TKα
)m

b is a compact operator from
Mp,β(wp,wq) to Mq,qβ/p(wq).

Remark 1.1. When β = 0, Theorem 1.1 implies Theorem A. There are some ex-
amples satisfying the condition of Theorem 1.1, such as w = |x|γ with γ ∈ (α−
n
p ,n−

n
p). By Lemma 2.2, it is not difficult to verify |x|γ ∈ Ap,q(Rn) for 0 ≤ α < n,

1 < p < q < ∞, 1/q = 1/p−α/n and γ ∈ (α− n
p ,n−

n
p).

As an application of Theorem 1.1, we have the corresponding results for the
θ-type Calderón–Zygmund operator and its commutators.

Corollary 1.1. Let m ∈ N, 1 < p < ∞, 0 ≤ β < 1 and w ∈ Ap(Rn).
(i) If b ∈ BMO(Rn), then

∥(TK)
m
b ( f )∥Mp,β(w) ≤C∥b∥m

BMO(Rn)∥ f∥Mp,β(w), ∀ f ∈ Mp,β(w).

(ii) If m ∈ N \ {0} and b ∈ BMO(Rn), then (TK)
m
b is a compact operator from

Mp,β(w) to Mp,β(w).

To prove Theorem 1.1, we will give a boundedness criterion of a class of sub-
linear operators on weighted Morrey spaces, which has interest in their own right.

Theorem 1.2. Let m∈N, 0≤α< n, 1< p< q<∞, 1/q= 1/p−α/n, 0≤ β< p/q
and w ∈ Ap,q(Rn). Let Tm be a linear or sublinear operator satisfying

(1.6) |Tm( f )(x)| ≤C1

ˆ
Rn

m

∏
j=1

|b j(x)−b j(y)|
| f (y)|

|x− y|n−α
dy,

where b⃗ = (b1, . . . ,bm) with each b j ∈ BMO(Rn). When m = 0, we denote T0 = T .
If Tm satisfies

(1.7) ∥Tm( f )∥Lq(wq) ≤C2

m

∏
j=1

∥b j∥BMO(Rn)∥ f∥Lp(wp), ∀ f ∈ Lp(wp),

then for any f ∈ Mp,β(wp,wq),

(1.8) ∥Tm( f )∥Mq,qβ/p(wq) ≤C(C1,C2,β)
m

∏
j=1

∥b j∥BMO(Rn)∥ f∥Mp,β(wp,wq).
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We would like to remark that Theorem 1.2 can apply to the multilinear commu-
tator. More precisely, let m ∈ N \ {0} and TKα

be defined as (1.1). For a vector
function b⃗ = (b1, . . . ,bm) with each b j ∈ BMO(Rn), the multilinear commutator
(TKα

)m
b⃗

is defined as

(TKα
)m

b⃗
( f )(x) := [bm, · · · [b2, [b1,TKα

]] · · · ](x)

=

ˆ
Rn

m

∏
j=1

(b j(x)−b j(y))
f (y)

|x− y|n−α
f (y)dy.

Clearly, (TKα
)m

b⃗
= (TKα

)m
b if b⃗ = (b1, . . . ,bm) with b j = b for 1 ≤ j ≤ m. Recently,

Guo, Wu and Yang [9] proved that (TKα
)m

b⃗
is bounded from Lp(wp) to Lq(wq) for

0 ≤ α < n, 1 < p < q < ∞, 1/q = 1/p−α/n and w ∈ Ap,q(Rn), provided that each
b j ∈ BMO(Rn) for all 1 ≤ j ≤ m (see [9, Theorem 5.3]). It is clear that (TKα

)m
b⃗

satisfies the condition (1.6). These facts together with Theorem 1.2 and a slight
modification of the proof of the compactness part in Theorem 1.1 implies directly
the following result.

Corollary 1.2. Let m ∈ N, 0 ≤ α < n, 1 < p < q < ∞, 1/q = 1/p−α/n and
w ∈ Ap,q(Rn).

(i) If b⃗ = (b1, . . . ,bm) with each b j ∈ BMO(Rn), then

∥(TKα
)m

b⃗
( f )∥Mq,qβ/p(wq) ≤C

m

∏
j=1

∥b j∥BMO(Rn)∥ f∥Mp,β(wp,wq)

holds for all f ∈ Mp,β(wp,wq).
(ii) If b⃗ = (b1, . . . ,bm) with each b j ∈ CMO(Rn), then (TKα

)m
b⃗

is a compact op-

erator from Mp,β(wp,wq) to Mq,qβ/p(wq).
The paper is organized as follows. In Section 2 we present some definitions and

lemmas, which are the main ingredients of proving our main results. The proofs
of Theorems 1.1 and 1.2 will be given in Section 3. We remark that some ideas of
our methods are taken from [9, 13, 16], but our methods and techniques are more
delicate and complex than that of [9, 13, 16].

Throughout the paper, for any p ∈ (1,∞] we let p′ denote the conjugate index of
p which satisfies 1/p+1/p′ = 1 (here we set ∞′ = 1). The letter C will stand for
positive constants not necessarily the same one at each occurrence but is indepen-
dent of the essential variables. For x = (x1, . . . ,xn) we set |x|∞ = max1≤i≤n |xi|.

2. SOME DEFINITIONS AND LEMMAS

In order to prove Theorem 1.1, we need the following properties for Ap(Rn) and
Ap,q(Rn) weighs.

Lemma 2.1. ( [16]). Let 1 < p < ∞ and w ∈ Ap(Rn). Then
(i) There exists a constant θ ∈ (0,1) such that w1+θ ∈ Ap(Rn). Both θ and

[w1+θ]Ap depend only on n, p and the Ap constant of w.
(ii) There exists a constant ε ∈ (0,1) such that w ∈ Ap−ε(Rn).
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(iii) The measure w(x)dx is doubling, i.e. for all λ > 1 we have

sup
Q cubes in Rn

w(λQ)

w(Q)
≤ [w]Apλ

np.

(iv) There exists a constant γw > 1 such that

inf
Q cubes in Rn

w(2Q)

w(Q)
≥ γw.

(v) Let b ∈ BMO(Rn), then

sup
Q cubes in Rn

( 1
w(Q)

ˆ
Q
|b(x)−bQ|pw(x)dx

)1/p
≃p,[w]Ap

∥b∥BMO(Rn).

Lemma 2.2. ( [19]). Let 0 < α < n, 1 < p,q < ∞, 1/q = 1/p−α/n and w ∈
Ap,q(Rn). Then

(i) wp ∈ Ap(Rn), wq ∈ Aq(Rn) and w−p′ ∈ Ap′(Rn).
(ii)

w ∈ Ap,q(Rn)⇔ wq ∈ Aq(n−α)/n(Rn)

⇔ wq ∈ A1+q/p′(Rn)⇔ w−p′ ∈ A1+p′/q(Rn).

For convenience, we always use the weighted Morrey spaces associated to cubes.
Let 1 ≤ p < ∞ and 0 ≤ β < 1. For two weights w and v defined on Rn, the weighted
Morrey space associated to cubes is defined by

M̃p,β(w,v) := { f ∈ Lp
loc(v) : ∥ f∥M̃p,β(w,v) < ∞},

where

∥ f∥M̃p,β(w,v) := sup
Q cubes in Rn

( 1
v(Q)β

ˆ
Q
| f (x)|pw(x)dx

)1/p
,

where the supremum is taken over all cubes in Rn.

Remark 2.1. If the weight w is doubling, then we have M̃p,β(w,v) = Mp,β(w,v),
i.e.

(2.1) ∥ f∥M̃p,β(w,v) ≃ ∥ f∥Mp,β(w,v),

which can be seen by the doubling property for w and the following observation

Q(x0,r)⊂ B(x0,
√

n/2r)⊂ Q(x0,
√

nr), ∀x0 ∈ Rn, r > 0.

To end this section, we shall present the following characterization that a subset
in Mp,β(w) is a strongly pre-compact set, which plays a key role in the proof of
compactness part of Theorem 1.1.

Proposition 2.3. ( [16]) Let 1 < p < ∞, 0 ≤ β < 1 and w ∈ Ap(Rn). Then a subset
F of Mp,β(w) is strongly pre-compact set in Mp,β(w) if F satisfies the following
conditions:

(i) F is bounded, i.e.
sup
f∈F

∥ f∥Mp,β(w) < ∞;
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(ii) F uniformly vanishes as infinity, i.e.

lim
N→+∞

∥ f χEN∥Mp,β(w) = 0, uniformly for all f ∈ F ,

where EN = {x ∈ Rn; |x|> N}.
(iii) F is uniformly translation continuous, i.e.

lim
r→0

sup
h∈B(0,r)

∥ f (·+h)− f (·)∥Mp,β(w) = 0, uniformly for all f ∈ F .

3. PROOFS OF MAIN RESULTS

In this section we present the proofs of Theorems 1.1 and 1.2. We first prove
Theorem 1.2.

Proof of Theorem 1.2. Let f ∈ M̃p,β1(wp,wq), β ∈ (0, p/q) and w ∈ Ap,q(Rn). Fix
a cube Q = Q(x0,r). We divide the proof into two parts:

Step 1. Proof of (1.8) for m = 0. By Remark 2.1, to prove (1.8), it is enough to
show that

(3.1)
( 1

wq(Q)qβ/p

ˆ
Q
|T ( f )(x)|qwq(x)dx

)1/q
≤C∥ f∥M̃p,β(wp,wq),

where C > 0 is independent of x0, r.
We write f as f = f χ2Q + f χ(2Q)c . Then we have

(3.2)

( 1
wq(Q)qβ/p

ˆ
Q
| T ( f )(x)|qwq(x)dx

)1/q

≤
( 1

wq(Q)qβ/p

ˆ
Q
| T ( f χ2Q)(x)|qwq(x)dx

)1/q

+
( 1

wq(Q)qβ/p

ˆ
Q
| T ( f χ(2Q)c)(x)|qwq(x)dx

)1/q

=: I1 + I2.

By Lemma 2.2 (i), we have that wq ∈ Aq(Rn). By Lemma 2.1 (iii), we see that
wq(2Q)
wq(Q) ≤ [wq]Aq2nq. This together with the condition (1.7) with m = 0 implies that

(3.3)

I1 =
( 1

wq(Q)qβ/p

ˆ
2Q

|T ( f )(x)|qwq(x)dx
)1/q

≤C2
1

wq(Q)β/p

(ˆ
2Q

| f (x)|pwp(x)dx
)1/p

=C2

( 1
wq(Q)β

ˆ
2Q

| f (x)|pwp(x)dx
)1/p

≤C2

((wq(2Q)

wq(Q)

)β 1
wq(2Q)β

ˆ
2Q

| f (x)|pwp(x)dx
)1/p

≤C(C2,n, p,q,β, [wq]Aq)∥ f∥M̃p,β(wp,wq).
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We now estimate I2. Fix x ∈ Q, we get by the condition (1.6) with m = 0 that

(3.4) T ( f χ(2Q)c)(x)≤C1

ˆ
(2Q)c

| f (z)|
|x− z|n−α

dz.

Note that |x− z| ≥ |x− z|∞ ≥ |z− x0|∞ −|x− x0|∞ ≥ 1
2 |z− x0|∞ for z ∈ (2Q)c. By

(3.4), we have

(3.5)
T ( f χ(2Q)c)(x)≤ 2n−αC1

∞

∑
l=0

ˆ
2lr≤|z−x0|∞<2l+1r

| f (z)|
|z− x0|n−α

∞

dz

≤ 2n−αC1

∞

∑
l=0

(2lr)α−n
ˆ

2l+1Q
| f (z)|dz.

Fix l ∈ N. Using the Hölder’s inequality, one has

(3.6)

ˆ
2l+1Q

| f (z)|dz ≤
(ˆ

2l+1Q
| f (z)|pwp(z)dz

)1/p(ˆ
2l+1Q

w−p′(z)dz
)1/p′

≤ wq(2l+1Q)β/p∥ f∥M̃p,β(wp,wq)

(ˆ
2l+1Q

w−p′(z)dz
)1/p′

.

Since w ∈ Ap,q(Rn), then

(3.7)
(ˆ

2l+1Q
w−p′(z)dz

)1/p′

≤ [w]1/q
Ap,q

|2l+1Q|1−
α

n wq(2l+1Q)−1/q.

Combining (3.7) with (3.6) leads to

(3.8)
ˆ

2l+1Q
| f (z)|dz ≤ [w]1/q

Ap,q
|2l+1Q|1−

α

n wq(2l+1Q)
qβ/p−1

q ∥ f∥M̃p,β(wp,wq).

In light of (3.5) and (3.8) we would have

(3.9)

T ( f χ(2Q)c)(x)≤ 2n−αC1

∞

∑
l=0

(2lr)α−n
ˆ

2l+1Q
| f (z)|dz

≤C(C1,n,α, [w]Ap,q)∥ f∥M̃p,β1 (wp,wq)

×
∞

∑
l=0

(2lr)α−n|2l+1Q|1−
α

n wq(2l+1Q)
qβ/p−1

q

≤C(C1,n,α, [w]Ap,q)∥ f∥M̃p,β(wp,wq)

∞

∑
l=0

wq(2l+1Q)
qβ/p−1

q .

Note that qβ/p < 1. Invoking Lemma 2.1 (iv) and (3.9), we have

I2 ≤C(C1,n,α, p,q, [w]Ap,q)∥ f∥M̃p,β(wp,wq)

∞

∑
l=0

(wq(2l+1Q)

wq(Q)

) qβ/p−1
q

≤C(C1,n,α, p,q, [w]Ap,q)∥ f∥M̃p,β(wp,wq)

∞

∑
l=0

γ
− (1−qβ/p)(l+1)

q
wq

≤C(C1,n,α, p,q, [w]Ap,q)∥ f∥M̃p,β(wp,wq).
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This combining with (3.2) and (3.3) implies

( 1
wq(Q)qβ/p

ˆ
Q
|T ( f )(x)|qwq(x)dx

)1/q

≤C(C1,C2,n,α, p,q, [w]Ap,q)∥ f∥M̃p,β(wp,wq).

This proves (3.1) and completes the proof of the case m = 0.

Step 2: Proof of (1.8) for m ∈ N\{0}. Let f ∈ M̃p,β(wp,wq) and β ∈ (0, p/q).
Fix a cube Q = Q(x0,r). By Remark 2.1, to prove (1.8) for m ∈ N\{0}, it suffices
to show that
(3.10)( 1

wq(Q)qβ/p

ˆ
Q
|Tm( f )(x)|qwq(x)dx

)1/q
≤C

m

∏
j=1

∥b j∥BMO(Rn)∥ f∥M̃p,β(wp,wq),

where C > 0 is independent of x0,r and b⃗.
Decompose f as f = f χ2Q + f χ(2Q)c . We can write

(3.11)

( 1
wq(Q)qβ/p

ˆ
Q
|Tm f (x)|qwq(x)dx

)1/q

≤
( 1

wq(Q)qβ/p

ˆ
Q
|Tm( f χ2Q)(x)|qwq(x)dx

)1/q

+
( 1

wq(Q)qβ/p

ˆ
Q
|Tm( f χ(2Q)c)(x)|qwq(x)dx

)1/q

=: J1 + J2.

For J1. By Theorem A, (1.7) and the fact that wq(2Q)
wq(Q) ≤ [wq]Aq2nq, we have

(3.12)

J1 ≤C2

m

∏
j=1

∥b j∥BMO(Rn)
1

wq(Q)β/p

(ˆ
2Q

| f (x)|pwp(x)dx
)1/p

=C2

m

∏
j=1

∥b j∥BMO(Rn)

( 1
wq(Q)β

ˆ
2Q

| f (x)|pwp(x)dx
)1/p

≤C2

m

∏
j=1

∥b j∥BMO(Rn)

×
((wq(2Q)

wq(Q)

)β 1
wq(2Q)β

ˆ
2Q

| f (x)|pwp(x)dx
)1/p

≤C(C2,n, p,q,β, [wq]Aq)
m

∏
j=1

∥b j∥BMO(Rn)∥ f∥M̃p,β(wp,wq).
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For J2. Fix x ∈ Q. By (1.6) and the fact that |x− z| ≥ 1
2 |z− x0|∞ for z ∈ (2Q)c,

one has
|Tm( f χ(2Q)c)|

≤C1

ˆ
(2Q)c

m

∏
j=1

|b j(x)−b j(z)|
| f (z)|

|x− z|n−α
dz

≤C12n−α
∞

∑
l=0

ˆ
2lr≤|z−x0|∞≤2l+1r

m

∏
j=1

|b j(x)−b j(z)|
| f (z)|

|z− x0|n−α
∞

dz

≤C12n−α
∞

∑
l=0

(2lr)α−n
ˆ

2l+1Q
| f (z)|

m

∏
j=1

|b j(x)−b j(z)|dz.

For convenience, we set E = {1, ...,m}. For any j ∈ {1,2, . . . ,m} and l ∈N, we let
b j,2l+1Q = 1

|2l+1Q|
´

2l+1Q b j(z)dz. Note that

m

∏
j=1

|b j(x)−b j(z)| ≤
m

∏
j=1

(|b j(x)−b j,2l+1Q|+ |b j(z)−b j,2l+1Q|)

≤ ∑
τ⊂E

(
∏
µ∈τ

|bµ(x)−bµ,2l+1Q|
)(

∏
ν∈E\τ

|bν(z)−bν,2l+1Q|
)
.

Then we have
Tm( f χ(2Q)c)(x)

≤ 2n−αC1 ∑
τ⊂E

(
∏
µ∈τ

|bµ(x)−bµ,2l+1Q|
)

×
∞

∑
l=0

(2lr)α−n
ˆ

2l+1Q
| f (z)|

(
∏

ν∈E\τ

|bν(z)−bν,2l+1Q|
)

dz.

Fix τ ⊂ E. Let t = (1+ε)p′

(1+ε)p′−ε
. Clearly, t ∈ (1, p). By Hölder’s inequality, we have

(3.13)

∞

∑
l=0

(2lr)α−n
ˆ

2l+1Q
| f (z)|

(
∏

ν∈E\τ

|bν(z)−bν,2l+1Q|
)

dz

≤
∞

∑
l=0

(2lr)α−n
(ˆ

2l+1Q
| f (z)|tdz

)1/t

×
(ˆ

2l+1Q

(
∏

ν∈E\τ

|bν(z)−bν,2l+1Q|
)t ′

dz
)1/t ′

.

On the other hand, we can choose {si}i∈E\τ ⊂ (1,∞) such that ∑i∈E\τ 1/si = 1. By
Hölder’s inequality and the property of BMO(Rn), one has

(3.14)

(ˆ
2l+1Q

(
∏

ν∈E\τ

|bν(z)−bν,2l+1Q|
)t ′

dz
)1/t ′

≤ ∏
ν∈E\τ

(ˆ
2l+1Q

|bν(z)−bν,2l+1Q|sνt ′dz
)1/(sνt ′)

≤ ∏
ν∈E\τ

∥bν∥BMO(Rn)|2l+1Q|1/(sνt ′)

≤ |2l+1Q|1/t ′
∏

ν∈E\τ

∥bν∥BMO(Rn).
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Let s = p/t. Then 1/(s′t) = 1/t − 1/p = 1/(p′(1+ ε)). By Hölder’s inequality,
one has

(3.15)

(ˆ
2l+1Q

| f (z)|tdz
)1/t

≤
(ˆ

2l+1Q
| f (z)|pwp(z)dz

)1/p(ˆ
2l+1Q

w−s′t(z)dz
)1/(s′t)

≤ w(2l+1Q)β/p∥ f∥M̃p,β(wp,wq)

(ˆ
2l+1Q

w−p′(1+ε)(z)dz
)1/(p′(1+ε))

.

Since w ∈ Ap,q(Rn), by Lemma 2.2, we have w−p′ ∈ A
1+ p′

q
(Rn). By Lemma 2.1

(i), there exist a constant ε ∈ (0,1) such that

w−p′(1+ε) ∈ A
1+ p′

q
(Rn)⊂ A

1+ p′(1+ε)
q

(Rn).

Then we have

(3.16)

(ˆ
2l+1Q

w−p′(1+ε)(z)dz
)1/(p′(1+ε))

≤ [w−p′(1+ε)]
1

p′(1+ε)

A
1+ p′(1+ε)

q

|2l+1Q|
1

1+ε
+ ε

p(1+ε)−
α

n wq(2l+1Q)−
1
q ∥ f∥M̃p,β(wp,wq).

Note that 1
1+ε

+ ε

p(1+ε) =
1
t . It follows from (3.13)–(3.16) that

(3.17)

∞

∑
l=0

(2lr)α−n
ˆ

2l+1Q
| f (z)|

(
∏

ν∈E\τ

|bν(z)−bν,2l+1Q|
)

dz

≤
∞

∑
l=0

(2lr)α−n[w−p′(1+ε)]
1

p′(1+ε)

A
1+ p′(1+ε)

q
(Rn)|2

l+1Q|
1
t −

α

n

×wq(2l+1Q)β/p−1/q∥ f∥M̃p,β(wp,wq)|2
l+1Q|

1
t′ ∏

ν∈E\τ

∥bν∥BMO(Rn)

≤ [w−p′(1+ε)]
1

p′(1+ε)

A
1+ p′(1+ε)

q
∏

ν∈E\τ

∥bν∥BMO(Rn)∥ f∥M̃p,β(wp,wq)

×
∞

∑
l=0

w(2l+1Q)β/p−1/q.
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By (3.17), (3.13), Lemma 2.1 (iv) and the fact that qβ/p < 1, one has

(3.18)

J2 ≤C ∑
τ∈E

∏
ν∈E\τ

∥bν∥BMO(Rn)∥ f∥M̃p,β(wp,wq)

×
( 1

wq(Q)qβ/p

ˆ
Q

( ∞

∑
l=0

(
∏
µ∈τ

|bµ(x)−bµ,2l+1Q|
)

×wq(2l+1Q)
qβ/p−1

q

)q
wq(x)dx

)1/q

≤C ∑
τ∈E

∏
ν∈E\τ

∥bν∥BMO(Rn)∥ f∥M̃p,β(wp,wq)

×
( 1

wq(Q)

ˆ
Q

( ∞

∑
l=0

(
∏
µ∈τ

|bµ(x)−bµ,2l+1Q|
)

×
(wq(2l+1Q)

wq(Q)

) qβ/p−1
q

)q
wq(x)dx

)1/q

≤C ∑
τ∈E

∏
ν∈E\τ

∥bν∥BMO(Rn)∥ f∥M̃p,β(wp,wq)w
q(Q)−1/q

×
(ˆ

Q

( ∞

∑
l=0

γ
− (1−qβ/p)(l+1)

q
wq

(
∏
µ∈τ

|bµ(x)−bµ,2l+1Q|
))q

wq(x)dx
)1/q

.

We can choose {ti}i∈τ ⊂ (1,∞) such that ∑i∈τ 1/ti = 1. By Minkowski’s inequality
and Hölder’s inequality, one has

(3.19)

(ˆ
Q

( ∞

∑
l=0

γ
− (1−qβ/p)(l+1)

q
wq

(
∏
µ∈τ

|bµ(x)−bµ,2l+1Q|
))q

wq(x)dx
)1/q

≤
∞

∑
l=0

γ
− (1−qβ/p)(l+1)

q
wq

(ˆ
Q

(
∏
µ∈τ

|bµ(x)−bµ,2l+1Q|
)q

wq(x)dx
)1/q

≤
∞

∑
l=0

γ
− (1−qβ/p)(l+1)

q
wq ∏

µ∈τ

(ˆ
Q

(
|bµ(x)−bµ,2l+1Q|

)qtµ
wq(x)dx

)1/(qtµ)
.

Note that wq ∈ Aq(Rn). By Lemma 2.1 (v), Minkowski’s inequality and the fact
that |bµ,Q −bµ,2l+1Q| ≤C(l +1)∥bµ∥BMO(Rn), we obtain

(3.20)

(ˆ
Q

(
|bµ(x)−bµ,2l+1Q|

)qtµ
wq(x)dx

)1/(qtµ)

≤ |bµ,Q −bµ,2l+1Q|wq(Q)1/(qtµ)

+
(ˆ

Q

(
bµ(x)−bµ,Q

)qtµ
wq(x)dx

)1/(qtµ)

≤C(l +1)∥bµ∥BMO(Rn)wq(Q)1/(qtµ).

It follows from (3.18)–(3.20) that

(3.21)

J2 ≤
m

∏
j=1

∥b j∥BMO(Rn)∥ f∥M̃p,β(wp,wq)∥ f∥M̃p,β(wp,wq)

∞

∑
l=0

l +1

γ

(1−qβ/p)(l+1)
q

wq

≤C
m

∏
j=1

∥b j∥BMO(Rn)∥ f∥M̃p,β(wp,wq)
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since γwq > 1 and qβ/p < 1. Then (3.10) follows from (3.21), (3.11) and (3.12).
This completes the proof of Theorem 1.2. □

Proof of Theorem 1.1. The boundedness part of Theorem 1.1 follows easily from
Corollary 1.2. We prove the compactness part of Theorem 1.1 by considering five
steps:

Step 1. Reduction via approximation argument. For a fixed b ∈ CMO(Rn)
and ε ∈ (0,1), there exists bε ∈ C ∞

c (Rn) such that ∥bε −b∥BMO(Rn) < ε. It is clear
that

bm
ε −bm = (bε −b)(bm−1

ε +bm−2
ε b+ · · ·+bm−1).

For convenience, we set

b⃗1 = (bε −b,

m−1︷ ︸︸ ︷
bε, · · · ,bε), b⃗2 = (bε −b,

m−2︷ ︸︸ ︷
bε, · · · ,bε,b), · · · , b⃗m = (bε −b,

m−1︷ ︸︸ ︷
b, · · · ,b).

We can write

|(TKα
)m

bε
( f )(x)− (TKα

)m
b ( f )(x)| ≤

m

∑
j=1

(TKα
)m

b⃗ j
( f )(x),

which combining with Corollary 1.2 and Minkowski’s inequality implies that

∥(TKα
)m

bε
( f )− (TKα

)m
b ( f )∥Mq,qβ/p(wq)

≤
m

∑
j=1

∥(TKα
)m

b⃗ j
( f )∥Mq,qβ/p(wq) ≤Cε∥ f∥Mp,β(wp,wq).

This together with [26, p. 278, Theorem (iii)] implies that to obtain the compact-
ness for (TKα

)m
b with b ∈ CMO(Rn), it suffices to prove the compactness for (TKα

)m
b

with b ∈ C ∞
c (Rn).

In what follow, we let b ∈ (C)∞
c (Rn). We want to show that (TKα

)m
b is compact

from Mp,β(wp,wq)→ Mq,qβ/p(wq).

Step 2. Reduction via smooth truncated techniques. We shall adopt the
truncated techniques followed from [13] to prove the compactness part. Let ϕ ∈
C∞([0,∞)) satisfy that 0 ≤ ϕ ≤ 1, ϕ(t) ≡ 1 if t ∈ [0,1] and ϕ(t) ≡ 0 if t ∈ [2,∞).
For any η > 0, we define the function Kα,η by

Kα,η(x,y) = Kα(x,y)(1−ϕ(2η
−1|x− y|)).

By (1.2), we have

(3.22)

| (TKα,η)
m
b ( f )− (TKα

)m
b ( f )|

≤
ˆ
Rn

|(b(x)−b(z))m f (z)||(Kα,η(x,z)−Kα(x,z))|dz

=

ˆ
Rn

|(b(x)−b(z))m f (z)||K(x,z)|ϕ(2η
−1|x− z|)dz

≤CKα
(∥b∥L∞(Rn)+ |b(x)|)m−1∥∇b∥L∞(Rn)

ˆ
|x−z|≤η

| f (z)|
|x− z|n−α−1 dz

≤CKα
(∥b∥L∞(Rn)+ |b(x)|)m−1∥∇b∥L∞(Rn)2n−αωnηMα( f )(x)
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for every x ∈ Rn, where ωn = |B(0,1)|. Here Mα with 0 < α < n is the usual
fractional maximal operator defined by

Mα( f )(x) = sup
r>0

1
|B(0,r)|1−α/n

ˆ
|y|≤r

| f (x− y)|dy.

Combining (3.22) with the Mp,β(wp,wq)→ Mq,qβ/p(wq) boundedness for Mα im-
plies

(3.23)
∥(TKα,η)

m
b ( f )− (TKα

)m
b ( f )∥Mq,qβ/p(wq)

≤Cη∥ f∥Mp,β(wp,wq), ∀ f ∈ Mp,β(wp,wq).

By (3.23) and [26, p. 278, Theorem (iii)], the compactness for (TKα
)m

b reduces
to the compactness for (TKα,η)

m
b when η > 0 is small enough. We set

F := {(TKα,η)
m
b ( f ) : ∥ f∥Mp,β(wp,wq) ≤ 1}.

To prove the compactness of (TKα,η)
m
b , it is enough to show that F is pre-compactness

when η > 0 is small enough. By Proposition 2.3, it is enough to verify that F sat-
isfies conditions (i)-(iii) of Proposition 2.3.

Step 3. A verification for condition (i) of Proposition 2.3. Let η ∈ (0,1). By
(3.23) and the boundedness part of Theorem 1.1,

∥ (TKα,η)
m
b ( f )∥Mq,qβ/p(wq)

≤ ∥(TKα,η)
m
b ( f )− (TKα

)m
b ( f )∥Mq,qβ/p(wq)+∥(TKα

)m
b ( f )∥Mq,qβ/p(wq)

≤C∥ f∥Mp,β(wp,wq) ≤C,

when ∥ f∥Mp,β(wp,wq) ≤ 1. This yields that F satisfies condition (i) of Proposition
2.3.

Step 4. A verification for condition (ii) of Proposition 2.3. Assume that
b ∈ C ∞

0 (Rn) and is supported in a cube Q = Q(0,r). Fix f ∈ Mp,β(wp,wq) with
∥ f∥Mp,β(wp,wq) ≤ 1 and EN := {x ∈ Rn : |x| > N} with N ≥ max{nr,1}. Note that
|z| ≤ n|z|∞ ≤ 1

2 nr ≤ 1
2 N ≤ 1

2 |x| when x ∈ EN and z ∈ Q. Then we have |x− z| ≥
|x|− |z| ≥ 1

2 |x| when x ∈ EN and z ∈ Q. By (1.2), we have

(3.24) |Kα,η(x,y)| ≤ |Kα(x,y)| ≤
CKα

|x− y|n−α
, for x ̸= y.

Note that b(x) = 0 when x ∈ EN since N ≥ nr. By (3.24), we have

(3.25)
(TKα,η)

m
b ( f )(x)≤CKα

ˆ
Rn

|(b(x)−b(z))m f (z)|
|x− z|n−α

dz

≤ 2n−αCKα
∥b∥m

L∞(Rn)|x|
α−n
ˆ

Q
| f (z)|dz

for every x ∈ EN . By the arguments similar to those used to derive (3.8), we have

(3.26)
ˆ

Q
| f (z)|dz ≤ [w]1/q

Ap,q
wq(Q)β/p−1/q|Q|1−α/n∥ f∥M̃p,β(wp,wq).
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For a fixed cube Q̃ = Q̃(x0, t), we get from (3.25) and (3.26) that

(3.27)

1
wq(Q̃)qβ/p

ˆ
Q̃
|(TKα,η)

m
b ( f )(x)χEN (x)|qwq(x)dx

≤C1wq(Q)qβ/p−1|Q|q
n−α

n
1

wq(Q̃)qβ/p

ˆ
Q̃∩EN

|x|−(n−α)qwq(x)dx

≤C1wq(Q)qβ/p−1|Q|q
n−α

n

× 1
wq(Q̃)qβ/p

∞

∑
j=0

ˆ
Q̃∩(B(0,2 j+1N)\B(0,2 jN))

|x|−(n−α)wq(x)dx

≤C1wq(Q)qβ/p−1|Q|q
n−α

n
1

wq(Q̃)qβ/p

×
∞

∑
j=0

(2 jN)−(n−α)qwq(Q̃∩ (B(0,2 j+1N)\B(0,2 jN)))

≤C1wq(Q)qβ/p−1|Q|q
n−α

n

×
∞

∑
j=0

(2 jN)−(n−α)qwq(Q̃∩ (B(0,2 j+1N)\B(0,2 jN)))1−qβ/p,

where C1 = (2n−αCKα
∥b∥m

L∞(Rn)∥ f∥M̃p,β(wp,wq))
q[w]Ap,q . Invoking Lemma 2.2, we

see that wq ∈ Aq n−α

n
(Rn). Applying Lemma 2.1(ii), there exists ε > 0 such that

wq ∈ Aq n−α

n −ε(Rn). Then by Lemma 2.1(iii) we have

wq(Q̃∩ (B(0,2 j+1N)\B(0,2 jN)))
≤ wq(B(0,2 j+1N))≤ wq(Q(0,2 j+2N))

≤ [wq]Aq n−α
n −ε

(2 j+2N)q(n−α)−nεwq(Q(0,1)).

This together with (3.27) yields that

1
wq(Q̃)qβ/p

ˆ
Q̃
|(TKα,η)

m
b ( f )(x)χEN (x)|qwq(x)dx

≤C1[wq]
1−qβ/p
Aq n−α

n −ε
(Rn)w

q(Q)qβ/p−1|Q|q
n−α

n wq(Q(0,1))1−qβ/p

×
∞

∑
j=0

(2 jN)−(n−α)q(2 j+2N)(q(n−α)−nε)(1−qβ/p)

≤C1[wq]
1−qβ/p
Aq n−α

n −ε
(Rn)w

q(Q)qβ/p−1|Q|q
n−α

n w(Q(0,1))1−qβ/p

×
∞

∑
j=0

(2 jN)−q2β(n−α)/p−nε(1−qβ/p)

≤C1[wq]
1−qβ/p
Aq n−α

n −ε
(Rn)w

q(Q)qβ/p−1|Q|q
n−α

n w(Q(0,1))1−qβ/p

×N−q2β(n−α)/p−nε(1−qβ/p),

which leads to

∥(TKα,η)
m
b ( f )χEN∥Mq,qβ/p(wq)

≤ 2n−αCKα
∥b∥m

L∞(Rn)∥ f∥M̃p,β(wp,wq)[w]
1/q
Ap,q

[wq]
1−qβ/p

q
Aq n−α

n −ε

wq(Q)
qβ/p−1

q |Q| n−α

n

×wq(Q(0,1))
1−qβ/p

q N−qβ(n−α)/p−nε(1/q−β/p).
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This together with (3.27) implies that F satisfies the condition (ii) of Proposition
2.3.

Step 5. A verification for condition (iii) of Proposition 2.3. It suffices to show
that

(3.28) lim
|h|→0

∥(TKα,η)
m
b ( f )(·+h)− (TKα,η)

m
b ( f )(·)∥Mq,qβ/p(wq) = 0

for a fixed η ∈ (0,1).
At first we shall prove that

(3.29) |Kα,η(x,y)−Kα,η(z,y)| ≤Cθ̃

( |x− z|
|x− y|

) 1
|x− y|n−α

for all |x−y|> 2|x− z|,where θ̃ := θ(t)+ t and the constant C is independent of η.
When |x− y|> 2|x− z|, we consider the following different cases:
Case 1: (|x− y| ≥ η and |z− y| ≥ η). In this case we have Kα,η(x,y) = Kα(x,y)

andKα,η(z,y) = Kα(z,y). This together with (1.3) yields (3.29).
Case 2: (|x−y|< η and |z−y|< η). Without loss of generality we may assume

that |x− y| ≥ |z− y|. It is clear that |y− z|> 1
2 |x− y|. We have

|Kα,η(x,y)−Kα,η(z,y)|
≤ |Kα(x,y)−Kα(z,y)|+ |Kα(x,y)−Kα(z,y)|ϕ(2η

−1|x− y|)
+ |Kα(z,y)||ϕ(2η

−1|x− y|)−ϕ(2η
−1|z− y|)|.

Similarly,

|Kα,η(y,x)−Kα,η(y,z)|
≤ |Kα(y,x)−Kα(y,z)|+ |Kα(y,x)−Kα(y,z)|ϕ(2η

−1|x− y|)
+ |Kα(y,z)||ϕ(2η

−1|x− y|)−ϕ(2η
−1|z− y|)|

Above facts together with (1.2) and (1.3) imply

|Kα,η(x,y)−Kα,η(z,y)|+ |Kα,η(y,x)−Kα,η(y,z)|
≤ 2(|Kα(x,y)−Kα(z,y)|+ |Kα(y,x)−Kα(y,z)|)
+(|Kα(z,y)|+ |Kα(y,z)|)|ϕ(2η

−1|x− y|)−ϕ(2η
−1|z− y|)|

≤ 2θ

( |x− z|
|x− y|

) 1
|x− y|n−α

+
2CKα

|y− z|n−α
|ϕ(2η

−1|x− y|)−ϕ(2η
−1|z− y|)|.

Note that |ϕ′(t)| ≤Cχ1≤t≤2(t) for all t > 0. Then we have

(3.30)
|ϕ(2η−1|x− y|)−ϕ(2η−1|z− y|)|

≤ 2
η
|ϕ′(t)||x− z| ≤C

2
η

χ1≤t≤2(t)≤C
4|x− z|

ηt
≤C

|x− z|
|x− y|

,

where t ∈ ( 2
η
|z− y|, 2

η
|x− y|). Therefore, we get

|Kα,η(x,y)−Kα,η(z,y)|+ |Kα,η(y,x)−Kα,η(y,x)| ≤Cθ̃

( |x− z|
|x− y|

) 1
|x− y|n−α

,

which gives (3.29) in this case.
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Case 3: (|x− y| ≥ η and |z− y|< η). In this case we have Kα,η(x,y) = Kα(x,y)
and|z− y| > 1

2 |x− y| since |x− y| > 2|x− z|. This together with (1.2), (1.3) and
(3.30) implies that

|Kα,η(x,y)−Kα,η(z,y)|+ |Kα,η(y,x)−Kα,η(y,z)|
= |Kα(x,y)−Kα,η(z,y)|+ |Kα(y,x)−Kα,η(y,z)|
≤ |Kα(x,y)−Kα(z,y)|+ |Kα(y,x)−Kα(y,z)|
+(|Kα(z,y)|+ |Kα(y,z)|)ϕ(2η

−1|z− y|)
≤ |Kα(x,y)−Kα(z,y)|+ |Kα(y,x)−Kα(y,z)|+(|Kα(z,y)|
+ |Kα(y,z)|)|ϕ(2η

−1|z− y|)−ϕ(2η
−1|x− y|)|

≤ θ

( |x− z|
|x− y|

) 1
|x− y|n−α

+
2CKα

|y− z|n−α

|x− z|
|x− y|

,

which proves (3.29) in this case.
Case 4: (|x− y|< η and |z− y| ≥ η). The case is similar to Case 3.
In what follows, we set |h|< η

8 and η ∈ (0,1). By the definition of (TKα,η)
m
b ,

(3.31)

|(TKα,η)
m
b ( f )(x+h)− (TKα,η)

m
b ( f )(x)|

≤
ˆ
Rn

|(b(x+h)−b(y))m(Kα,η(x+h,y)−Kα,η(x,y)) f (y)|dy

+

ˆ
Rn

|((b(x+h)−b(y))m − (b(x)−b(y))m)Kα,η(x,y) f (y)|dy

=: L1 +L2.

For L1. Due to |h|< η

8 , then we have Kα,η(x+h,y) = Kα,η(x,y) = 0 when |x−y| ≤
η

4 . Moreover, |x− y| > 2|h| when |x− y| > η

4 . By (3.29), we have that for almost
every x ∈ Rn,

L1 ≤
ˆ
|x−y|> η

4

|b(x+h)−b(y)|m|Kα,η(x+h,y)−Kα,η(x,y)|| f (y)|dy

≤C
ˆ
|x−y|> η

4

1
|x− y|n−α

θ̃

( |h|
|x− y|

)
| f (y)|dy

≤C
∞

∑
j=0

θ̃

(22− j|h|
η

)ˆ
2 j−2η≤|x−y|≤2 j−1η

1
|x− y|n−α

| f (y)|dy

≤C
∞

∑
j=0

θ̃

(22− j|h|
η

)
Mα f (x).

Note that

∞

∑
j=0

θ̃

(22− j|h|
η

)
≤

∞

∑
j=0

ˆ 2− j+1

2− j

θ̃(4t|h|/η)

t
dt ≤C

ˆ 2

0

θ̃(4t|h|/η)

t
dt

≤C
ˆ 8|h|/η

0

θ̃(t)
t

dt < ∞.
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This together with the boundedness for Mα : Mp,β(wp,wq)→ Mq,qβ/p(wq) implies
that

∥L1∥Mq,β2 (wq)

≤C
(ˆ 8|h|/η

0

θ̃(t)
t

dt
)
∥Mα( f )∥Mq,qβ/p(wq) ≤C

(ˆ 8|h|/η

0

θ̃(t)
t

dt
)
∥ f∥Mp,β(wp,wq)

≤C
ˆ 8|h|/η

0

θ̃(t)
t

dt,

which leads to ∥L1∥Mq,qβ/p(wq) → 0 as |h| → 0.
Divide the second term L2 by

L2 =

ˆ
Rn

|(b(x+h)−b(y))m − (b(x)−b(y))m||Kα,η(x,y) f (y)|dy

=

ˆ
|x−y|>η

|(b(x+h)−b(y))m − (b(x)−b(y))m||Kα,η(x,y) f (y)|dy

+

ˆ
η/2≤|x−y|≤η

|(b(x+h)−b(y))m − (b(x)−b(y))m||Kα,η(x,y) f (y)|dy

=: L2,1 +L2,2.

We write

(b(x+h)−b(y))m − (b(x)−b(y))m

= (b(x+h)−b(x)+b(x)−b(y))m − (b(x)−b(y))m

=
m

∑
i=1

Ci
m(b(x+h)−b(x))i(b(x)−b(y))m−i

=
m

∑
i=1

Ci
m(b(x+h)−b(x))i

m−i

∑
j=0

C j
m−ib(x)

j(−b(y))m−i− j,

where Cr
N = N!

r!(N−r)! for any r, N ∈ N with r ≤ N. Hence, we obtain

L2,1 ≤
∞

∑
i=1

Ci
m|b(x+h)−b(x)|i

m−i

∑
j=0

C j
m−i|b(x)|

j

×
∣∣∣ˆ

|x−y|>η

Kα(x,y)b(y)m−i− j f (y)dy
∣∣∣

≤
m

∑
i=1

Ci
m|b(x+h)−b(x)|i

m−i

∑
j=0

C j
m−i|b(x)|

j|TKα
(bm−i− j f )(x)|

≤C|h||TKα
( f )(x)|.

From this and the Mp,β(wp,wq)→ Mq,qβ/p(wq) boundness of TKα
, we obtain

∥L2,1∥Mq,qβ/p(wq) ≤C|h|∥TKα
f∥Mq,qβ/p(wq) ≤C|h|∥ f∥Mp,β(wp,wq) ≤C|h|.
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On the other hand, one has∣∣∣ˆ
η/2≤|x−y|≤η

Kα,η(x,y)b(y)m−i− j f (y)dy
∣∣∣

≤C
ˆ

η/2≤|x−y|≤η

|Kα,η(x,y)|| f (y)|dy

≤C
1

ηn−α

ˆ
η/2≤|x−y|≤η

| f (y)|dy ≤CMα( f )(x).

This leads to

L2,2 ≤
i

∑
i=1

Ci
m|b(x+h)−b(x)|i

m−i

∑
j=0

C j
m−i|b(x)|

j

×
∣∣∣ˆ

η/2≤|x−y|≤η

Kα,η(x,y)b(y)m−i− j f (y)dy
∣∣∣

≤C|h|Mα( f )(x).

It follows that

∥L2,2∥Mq,qβ/p(wq) ≤C|h|∥Mα( f )∥Mq,qβ/p(wq) ≤C|h|∥ f∥Mp,β(wp,wq) ≤C|h|.
It follow from above estimates of L1,L2,1,L2,2 that

∥(TKα,η)
m
b ( f )(·+h)− (TKα,η)

m
b ( f )(·)∥Mq,qβ/p(wq) → 0

as |h| → 0, uniformly for all f with ∥ f∥Mp,β(wp,wq) ≤ 1. This verifies the condition
(iii) of Proposition 2.3. Theorem 1.1 is now proved. □
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