Characterization of imbricate-ruled surfaces via rotation minimizing Darboux frame in Minkowski 3-space \mathbb{E}^3_1

Emad Solouma$^{a, *}$, Ibrahim Al-Dayelb, Meraj Ali Khana,* and Youssef A. A. Lazer a

a Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University, Saudi Arabia, emmahmoud@imamu.edu.sa; iaaldayel@imamu.edu.sa; MSKhan@imamu.edu.sa; yalazer@imamu.edu.sa

* Correspondence: Email: emmahmoud@imamu.edu.sa, emadms74@gmail.com

Abstract: Using a common tangent vector field to a surface along a curve, we discuss a new Darboux frame in this study that we refer to as the rotation minimizing Darboux frame (RMDF) in Minkowski 3-space. The parametric equation resulting from the RMDF frame for an imbricate-ruled surface is then provided. As a result, minimal (or maximal for timelike surfaces) ruled surfaces are derived, along with the necessary and sufficient criteria for imbricate-ruled surfaces to be developable. The surfaces also describe the parameter curves of these surfaces’ asymptotic, geodesic, and curvature lines. We also give an example to emphasize the most significant results.

Keywords: Imbricate ruled surface, Darboux frame, developable and minimal surface, Minkowski 3-space

Mathematics Subject Classification: 53A04, 53A05, 53A35

1. Introduction

For thousands of years throughout history, mathematicians, philosophers, and scientists have studied the surface idea. In the process, differential geometry’s advancement has substantially strengthened the theory of surfaces. The pioneers in this field of study were Gauss, Riemann, and Poincare, but Monge also made some important contributions to the study of surfaces. Surfaces are represented as graphs of functions of two variables according to Monge’s methodology.

A surface that can be created by moving a straight line along a spatial curve is a ruled surface [4, 16]. Since they have relatively simple features and enable us to analyze intricate surfaces, ruled surfaces are recommended for study. Among the main topics of research on ruled surfaces include the classification of ruled surfaces, features attributed to the base curve, geodesics, shape operators of surfaces, and the study of developable and non-developable ruled surfaces.
Since the Lorentzian metric is not a positive definite metric, the differential geometry of ruled surfaces in the Minkowski 3-space E^3_1 is far more complex than in the Euclidean event. In contrast to the distance function in Euclidean space, which may only be positive, the distance function $\langle \cdot, \cdot \rangle$ can be positive, negative, or zero.

Similar properties may be seen in Euclidean space when ruled surfaces in Minkowski space are surveyed, but the structure of Minkowski space leads to some fascinating contrasts. Ruled surfaces in Minkowski space have more complicated geometry than those in Euclidean space since their characterisation is dependent on both the direction and the base curve. Regulated surfaces can be categorized as developable or non-developable, as is currently understood [1, 2, 6–10, 15, 17–20].

A Darboux frame is a natural moving frame constructed on a surface. It is the analog of the Frenet–Serret frame as applied to surface geometry. A Darboux frame exists at any non-umbilic point of a surface embedded in Euclidean space [3, 13].

The aim of this study is to develop a brand-new frame called the rotation minimizing Darboux frame (RMDF), which travels along a spacelike curve that entirely encircles a timelike surface in the coordinate system E^3_1. We also demonstrate how to use RMDF to create imbricate-ruled surfaces in Minkowski 3-space using the vectors of the Frenet frame of non-null space curves. Next, depending on the curvatures of the base curve, requirements are simultaneously given for each imbricate-ruled surface to be minimal or developable. Asymptotic, geodesic, and curvature lines are examples of parametric curves that are characterized by these requirements. An example concerning imbricate-ruled surfaces are given at the conclusion of the inquiry.

2. Preliminaries

The definition of the Lorentzian product in Minkowski three-dimensional space E^3_1 is

$$\mathcal{L} = -ds^2_1 + ds^2_2 + ds^2_3,$$

where (s_1, s_2, s_3) is E^3_1’s coordinate system. The characteristics of an arbitrary vector $\zeta \in E^3_1$ are as follows: spacelike if $\mathcal{L}(\zeta, \zeta) > 0$ or $\zeta = 0$, timelike if $\mathcal{L}(\zeta, \zeta) < 0$ and null if $\mathcal{L}(\zeta, \zeta) = 0$ and $\zeta \neq 0$.

Similarly, a curve $\mu = \mu(s)$ can be spacelike, timelike or null if its $\mathcal{L}(s)$ is spacelike, timelike or null. The vector product of vectors $u = (u_1, u_2, u_3)$ and $v = (v_1, v_2, v_3)$ in E^3_1 is defined by [12, 13]

$$u \times v = (u_3v_2 - u_2v_3, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$$

Consider a timelike embedding $\Theta : U \rightarrow E^3_1$ from open subset $U \in E^2$ represented a regular timelike surface $\Theta(s, u)$. The Θ’s tangent vectors are

$$\Theta_s = \frac{\partial \Theta}{\partial s}, \quad \Theta_u = \frac{\partial \Theta}{\partial u}.$$

The unit normal vector to Θ given as

$$\mathbb{N} = \frac{\Theta_s \times \Theta_u}{\|\Theta_s \times \Theta_u\|}. \quad (2.1)$$

The coefficient of first and second fundamental forms given as:

$$E = \langle \Theta_s, \Theta_s \rangle, \quad F = \langle \Theta_s, \Theta_u \rangle, \quad G = \langle \Theta_u, \Theta_u \rangle,$$

$$e = \langle \mathbb{N}, \Theta_s \rangle, \quad f = \langle \mathbb{N}, \Theta_u \rangle, \quad g = \langle \mathbb{N}, \Theta_u \rangle. \quad (2.2)$$
The Gaussian and mean curvatures are defined as:

\[
K(s, u) = \frac{eg - f^2}{EG - F^2}, \quad H(s, u) = \frac{Eg - 2Ff + Ge}{2(EG - F^2)}.
\]

(2.3)

Let \(\phi : I \subseteq \mathbb{R} \rightarrow \Theta \) be a regular spacelike curve with timelike binormal on \(\Theta \). Denoted \(\{T, N, B\} \) be the moving Frenet frame of \(\phi \), then \(\{T, N, B\} \) has the following properties: [4, 12, 13]:

\[
T'(s) = \kappa(s) N(s),
\]

\[
N'(s) = -\kappa(s) T(s) + \tau(s) B(s),
\]

(2.4)

\[
B'(s) = \tau(s) N(s),
\]

where \(\left(\frac{d}{ds} \right) \), \(\mathcal{L}(T, T) = \mathcal{L}(N, N) = -\mathcal{L}(B, B) = 1 \), \(\mathcal{L}(T, N) = \mathcal{L}(N, B) = \mathcal{L}(T, B) = 0 \) and \(\kappa(s) \), and \(\tau(s) \) are the curvature functions of \(\phi \). For the unit vector \(P \) defined by \(P = \mathbb{N} \times T \), the Darboux frame \(\{T, N, P\} \) associated with \(\phi(s) \) in \(E^3 \) satisfying the equations [4, 13]:

\[
T'(s) = \kappa_g(s) N(s) + \kappa_n(s) P(s),
\]

\[
N'(s) = -\kappa_g(s) T(s) + \tau_g(s) P(s),
\]

\[
P'(s) = \kappa_n(s) T(s) + \tau_g(s) N(s),
\]

(2.5)

where \(\mathcal{L}(T, T) = \mathcal{L}(N, N) = -\mathcal{L}(P, P) = 1 \) and \(\mathcal{L}(T, N) = \mathcal{L}(T, P) = \mathcal{L}(N, P) = 0 \). Here, the normal curvature \(\kappa_n(s) \), the geodesic curvature \(\kappa_g(s) \) and the geodesic curve \(\tau_g(s) \) of \(\phi \) can be obtained as follows:

\[
\kappa_n(s) = \langle \phi'', P \rangle,
\]

\[
\kappa_g(s) = \langle \phi'', N \rangle,
\]

\[
\tau_g(s) = -\langle P, N' \rangle.
\]

(2.6)

3. Rotation minimizing Darboux frame

It is well known that the Frenet frame along a space curve on a surface is the source of the Bishop frame. In this section, by the same way we develop a brand-new alternative of the Darboux frame known as the rotation-minimizing Darboux frame (RMDF) on a surface in Minkowski 3-space along a space curve. Next, we get the intrinsic equations resulting from the RMDF for a generalized relaxed elastic line situated on an orientated surface. Let \(\phi = \phi(s) \) be a regular spacelike curve moving at unit speed that has a timelike binormal vector entirely affixed to a timelike surface \(\Psi \) in \(E^3_1 \) through a Darboux frame (2.5). Let’s use the notation \(\{T, V_1, V_2\} \) to denote an RMDF. A brief calculation demonstrates that

\[
V_1(s) = \cosh \theta(s) N(s) + \sinh \theta(s) P(s),
\]

\[
V_2(s) = \sinh \theta(s) N(s) + \cosh \theta(s) P(s).
\]

(3.1)

Differentiate (3.1) with respect to \(s \) and using (2.5), we have

\[
V'_1(s) = - (\kappa_g(s) \cosh \theta(s) - \kappa_n(s) \sinh \theta(s)) T(s) + (\tau_g(s) + \theta'(s)) V_2(s),
\]

\[
V'_2(s) = (- \kappa_g(s) \sinh \theta(s) + \kappa_n(s) \cosh \theta(s)) T(s) + (\tau_g(s) + \theta'(s)) V_2(s).
\]
The equalities (3.1), on the other hand, are obtained by combining
\[T'(s) = \kappa_g(s) \mathbf{N}(s) + \kappa_n(s) P(s). \]

Then, we get
\[T'(s) = (\kappa_g(s) \cosh \theta(s) - \kappa_n(s) \sinh \theta(s))V_1(s) + (\kappa_g(s) \sinh \theta(s) + \kappa_n(s) \cosh \theta(s))V_2(s). \]

The derivative with respect to \(s \) produces the frame similarly to the previous frames:
\begin{align*}
T'(s) &= (\kappa_g(s) \cosh \theta(s) - \kappa_n(s) \sinh \theta(s))V_1(s) + (\kappa_g(s) \sinh \theta(s) + \kappa_n(s) \cosh \theta(s))V_2(s), \\
V_1'(s) &= -(\kappa_g(s) \cosh \theta(s) - \kappa_n(s) \sinh \theta(s))T(s) + (\tau_g(s) + \theta'(s))V_2(s), \\
V_2'(s) &= (\kappa_g(s) \sinh \theta(s) + \kappa_n(s) \cosh \theta(s))T(s) + (\tau_g(s) + \theta'(s))V_2(s).
\end{align*}

Assume \(\tau_g(s) = -\theta'(s) \), the RMDF’s variation formula is given in the accompanying statement, which reads as follows:

Theorem 3.1. Let \(\phi = \phi(s) \) be a spacelike curve lying fully on a timelike surface \(\Psi \) space \(\mathbb{E}^3_1 \) via to Darboux frame (2.5). Then, the RMDF \(\{T, V_1, V_2\} \) is given by
\begin{align*}
T'(s) &= \xi_1(s) V_1(s) + \xi_2(s) V_2(s), \\
V_1'(s) &= -\xi_1(s) T(s), \\
V_2'(s) &= \xi_2(s) T(s), \quad (3.2)
\end{align*}

where \(\xi_1 \) and \(\xi_2 \) are RMDF’s curvatures which are obtained by the relation:
\begin{align*}
\xi_1(s) &= \kappa_g(s) \cosh \theta(s) - \kappa_n(s) \sinh \theta(s), \\
\xi_2(s) &= -\kappa_g(s) \sinh \theta(s) + \kappa_n(s) \cosh \theta(s). \quad (3.3)
\end{align*}

The angle \(\theta(s) \) between \(\mathbf{N} \) and \(V_1 \) is given by
\[\theta(s) = -\int_0^s \tau_g \, ds, \]
also we have the relation
\[\xi_1^2 - \xi_2^2 = \kappa_g^2 - \kappa_n^2. \quad (3.4) \]

Corollary 3.1. Let \(\phi = \phi(s) \) be a spacelike curve lying fully on a timelike surface \(\Psi \) in space \(\mathbb{E}^3_1 \) via to RMDF (3.2). If \(\phi(s) \) is an asymptotic curve, then \(\xi_1 \) and \(\xi_2 \) satisfy
\[\coth \theta(s) = -\frac{\xi_1(s)}{\xi_2(s)}. \quad (3.5) \]

Corollary 3.2. Let \(\phi = \phi(s) \) be a spacelike curve lying fully on a timelike surface \(\Psi \) in space \(\mathbb{E}^3_1 \) via to RMDF (3.2). If RMDF’s curvatures are constants on a geodesic or asymptotic, then \(\tau_g(s) = -\theta'(s) = 0 \) and \(\phi(s) \) is will a principal curve.
4. Characterizations of imbricate-ruled surfaces

This section examines specific imbricate-ruled surfaces as an application of the RMDF in the Minkowski 3-space E^3_1 for a given timelike surface and a spacelike curve completely resting on it. We anticipate that researchers with competence in mathematical modeling will find our findings to be valuable.

Definition 4.1. For a regular spacelike curve $\phi = \phi(s)$ with timelike binormal vector and lying fully on a timelike surface Ψ in E^3_1. The TV_1-imbricate-ruled surfaces via RMDF (3.2) of $\phi(s)$ is defined by

$$
\Phi_v^T(s, v) = T(s) + v V_1(s), \\
\Phi_r^T(s, v) = V_1(s) + v T(s).
$$

(4.1)

Theorem 4.1. Let $\phi = \phi(s)$ be a unit speed spacelike curve lying fully on a timelike surface Ψ in E^3_1 via to RMDF (3.2). Then TV_1-imbricate-ruled surfaces (4.1) are developable surfaces.

Proof. Using (3.2), we obtained the first and second partial derivatives the first equation (4.1) with regard to s and v, we get

$$
\left(\Phi_v^T\right)_s = -v \xi_1 T(s) + \xi_1 V_1(s) + \xi_2 V_2(s), \\
\left(\Phi_v^T\right)_v = -\xi_1 T(s), \\
\left(\Phi_v^T\right)_{ss} = -[\xi_1^2 - v \xi_1^2] T(s) + [\xi_1' - v \xi_1^2] V_1(s) + [\xi_2' - \xi_2(v \xi_1 - \xi_2)] V_2(s), \\
\left(\Phi_v^T\right)_{sv} = -\xi_1 T(s), \quad \left(\Phi_v^T\right)_{sv} = 0.
$$

(4.2)

With the aforementioned equation, we can obtain the first and second fundamental forms of Φ_v^T's component parts as follows:

$$
E_v^T = v^2 \xi_1^2 + \kappa^2, \quad F_v^T = v \xi_1^2, \quad G_v^T = \xi_1^2.
$$

(4.3)

$$
E_v^T = \xi_2(\xi_1' - v \xi_1^2) - \xi_2[\xi_1' - \xi_2(v \xi_1 - \xi_2)]
$$

$$
E_v^T = \sqrt{|\xi_2^2 - \xi_1^2|}.
$$

(4.4)

$$
f_v^T = 0, \quad g_v^T = 0.
$$

The Gaussian curvature K_v^T and the mean curvature H_v^T are determined using the data mentioned above:

$$
K_v^T = 0,
$$

$$
H_v^T = \frac{\xi_2^2[\xi_2(\xi_1' - v \xi_1^2) - \xi_2[\xi_1' - \xi_2(v \xi_1 - \xi_2)]]}{\sqrt{|\xi_2^2 - \xi_1^2|}}.
$$

(4.5)

(4.6)
However, by applying the RMDF (3.2) and differentiating the second equation in (4.1) with regard to \(s\) and \(\nu\) to get the first and second partial derivatives, we obtain

\[
\begin{align*}
\left(\Phi_{V_1}^T \right)_s &= -\xi_1 T(s) + \nu \xi_1 V_1(s) + \nu \xi_2 V_2(s), \\
\left(\Phi_{V_1}^T \right)_\nu &= -\xi_1 T(s).
\end{align*}
\]

(4.7)

The normal vector field of the surface \(\Phi_{V_1}^T(s, \nu)\) is determined as follows:

\[
\begin{align*}
U_{V_1}^T &= \frac{\xi_2 V_1(s) - \xi_1^2}{V} \sqrt{\xi_2^2 - \xi_1^2}, \\
\left(\Phi_{V_1}^T \right)_{ss} &= [\nu \xi_1 - \xi_1^2] T(s) + [\nu \xi_1^2 - \xi_1^2] V_1(s) + [\nu \xi_2^2 - \xi_1 \xi_2] V_2(s), \\
\left(\Phi_{V_1}^T \right)_{sr} &= \xi_1 V_1(s) + \xi_2 V_2(s), \\
\left(\Phi_{V_1}^T \right)_{\nu\nu} &= 0.
\end{align*}
\]

(4.8)

The \(\Phi_{V_1}^T\)'s component of the first and second fundamental forms are obtained as:

\[
\begin{align*}
E_{V_1}^T &= \xi_1^2 + \nu^2 k^2, \\
F_{V_1}^T &= -\xi_1, \\
G_{V_1}^T &= 1.
\end{align*}
\]

(4.9)

\[
\begin{align*}
e_{V_1}^T &= \frac{\xi_2 (\nu \xi_1 - \xi_1^2) + \xi_1 (\nu \xi_2 - \xi_1 \xi_2)}{\sqrt{\xi_2^2 - \xi_1^2}}, \\
f_{V_1}^T &= 0, \\
g_{V_1}^T &= 0.
\end{align*}
\]

(4.10)

So, the Gaussian curvature and the mean curvature are given by

\[
\begin{align*}
K_{V_1}^T &= 0, \\
H_{V_1}^T &= \frac{\xi_2 (\nu \xi_2 - \xi_1^2) + \xi_1 (\nu \xi_2 - \xi_1 \xi_2)}{2 \nu^2 k^2 \sqrt{\xi_2^2 - \xi_1^2}}.
\end{align*}
\]

(4.11)

\[\square\]

Corollary 4.1. Let \(\phi = \phi(s)\) be a unit speed spacelike curve lying fully on a timelike surface \(\Psi\) in \(E_1^3\) via to RMDF (3.2). Then the \(s\)-parameter curves of \(TV_1\)-imbricate-ruled surfaces (4.1) are

i. not geodesic,

ii. asymptotic curves iff \(\vartheta(s) = \tanh^{-1}\left(\frac{K_s}{K_n}\right)\) or \(\vartheta(s) = \tanh^{-1}\left(\frac{K_n}{K_s}\right)\).

Proof. Let \(\Phi_{V_1}^T(s, \nu)\) defined by (4.1) due to RMDF (3.2) in \(E_1^3\) be imbricate-ruled surface. Since

\[
\begin{align*}
\left(\Phi_{V_1}^T \right)_{ss} \times U_{V_1}^T &= \frac{1}{\sqrt{\xi_2^2 - \xi_1^2}} \left[\xi_2 \left(\xi_2 - \xi_2(\nu \xi_1 - \xi_2) \right) - \xi_1 (\xi_1' - \nu \xi_2) + (\xi_1 - \xi_2)(\xi_1^2 - \nu \xi_1) \right], \\
\left(\Phi_{V_1}^T \right)_{sr} \times U_{V_1}^T &= \frac{1}{\sqrt{\xi_2^2 - \xi_1^2}} \left[\xi_2 (\nu \xi_2 - \xi_1 \xi_2) + \xi_1 (\nu \xi_2 - \xi_1^2) + (\xi_1 + \xi_2)(\nu k^2 - \xi_1') \right].
\end{align*}
\]
Since \((\Phi^T_{V_1})_{ss} \times U^T_{V_1} \neq 0 \) and \((\Phi^V_T)_{ss} \times U^V_T \neq 0 \), then \(s \)-parameter curves of \(TV_1 \)-imbricate-ruled surfaces are not geodesic. Now
\[
\left\langle (\Phi^T_{V_1})_{ss}, U^T_{V_1} \right\rangle = \frac{\xi_1^2 - \xi_1^2 + \xi_1^2 \xi_2^2 - \xi_1^2}{\sqrt{\xi_2^2 - \xi_1^2}},
\]
and
\[
\left\langle (\Phi^V_T)_{ss}, U^V_T \right\rangle = \frac{\nu(\xi_1^2 \xi_2^2 + \xi_1^2 \xi_2^2) - 2 \xi_1^2 \xi_2^2}{\sqrt{\xi_2^2 - \xi_1^2}}.
\]
From here, if \(\xi_1 = 0 \) and \(\xi_2 \neq 0 \) or \(\xi_1 \neq 0 \) and \(\xi_2 = 0 \) then \(\left\langle (\Phi^T_{V_1})_{ss}, U^T_{V_1} \right\rangle = 0 \) and \(\left\langle (\Phi^V_T)_{ss}, U^V_T \right\rangle = 0 \). So the \(s \)-parameter curves of \(TV_1 \)-imbricate-ruled surfaces are asymptotic curves iff \(\theta(s) = \tanh^{-1}\left(\frac{K_n}{K_f}\right) \) or \(\theta(s) = \tanh^{-1}\left(\frac{K_n}{K_f}\right) \).

Corollary 4.2. Let \(\phi = \phi(s) \) be a unit speed spacelike curve lying fully on a timelike surface \(\Psi \) in \(E^3 \) via to RMDF (3.2). Then the \(\nu \)-parameter curves of \(TV_1 \)-imbricate-ruled surfaces (4.1) are

i. geodesic,

ii. asymptotic curves.

Proof. Let \(\Phi^T_{V_1}(s, \nu) \) defined by (4.1) due to RMDF (3.2) in \(E^3 \) be imbricate-ruled surface. Since \((\Phi^T_{V_1})_{ss} \times U^T_{V_1} = 0 \) and \((\Phi^V_T)_{ss} \times U^V_T = 0 \), then the \(\nu \)-parameter curves of \(TV_1 \)-imbricate-ruled surfaces are geodesic. Also, since \(\left\langle (\Phi^T_{V_1})_{ss}, U^T_{V_1} \right\rangle = 0 \) and \(\left\langle (\Phi^V_T)_{ss}, U^V_T \right\rangle = 0 \), then the \(\nu \)-parameter curves of \(TV_1 \)-imbricate-ruled surfaces are asymptotic curves. \(\square \)

Corollary 4.3. Let \(\phi = \phi(s) \) be a unit speed spacelike curve lying fully on a timelike surface \(\Psi \) in \(E^3 \) via to RMDF (3.2). Then the \(s \) and \(\nu \)-parameter curves of \(TV_1 \)-imbricate-ruled surfaces (4.1) are principal curves if and only if \(\xi_1 = 0 \).

Proof. Let \(\Phi^T_{V_1}(s, \nu) \) defined by (4.1) due to RMDF (3.2) in \(E^3 \) be imbricate-ruled surface. From equations (4.4), (4.5), (4.9), and (4.10), we have
\[
F^T_{V_1} = f^T_{V_1} = F^V_T = f^V_T = 0,
\]
for \(\xi_1 = 0 \), thus, the proof is completed. \(\square \)

Definition 4.2. For a regular spacelike curve \(\phi = \phi(s) \) with timelike binormal vector and lying fully on a timelike surface \(\Psi \) in \(E^3 \). The \(TV_2 \)-imbricate-ruled surfaces via RMDF (3.2) of \(\phi(s) \) is defined by
\[
\Phi^T_{V_2}(s, \nu) = T(s) + \nu V_2(s),
\]
\[
\Phi^V_T(s, \nu) = V_2(s) + \nu T(s).
\]

Theorem 4.2. Let \(\phi = \phi(s) \) be a unit speed spacelike curve lying fully on a timelike surface \(\Psi \) in \(E^3 \) via to RMDF (3.2). Then \(TV_2 \)-imbricate-ruled surfaces (4.12) are developable and minimal surfaces iff \(\theta(s) = \tanh^{-1}\left(\frac{K_n}{K_f}\right) \) or \(\theta(s) = \tanh^{-1}\left(\frac{K_n}{K_f}\right) \).
Proof. Using (3.2) and differentiating the first equation (4.12) with regard to \(s \) and \(\nu \), we get

\[
\begin{align*}
\left(\Phi^T_{V_2} \right)_s &= \nu \xi_2 T(s) + \xi_1 V_2(s) + \xi_2 V_2(s), \\
\left(\Phi^T_{V_2} \right)_\nu &= V_2(s).
\end{align*}
\]

(4.13)

\[
\begin{align*}
\left(\Phi^T_{V_2} \right)_{ss} &= [\nu \xi'_2 + \kappa^2] T(s) + [\xi'_1 + \nu \xi_1 \xi_2] V_2(s) + [\xi'_2 + \nu \xi_2^3] V_2(s), \\
\left(\Phi^T_{V_2} \right)_{su} &= \xi_2 T(s), \quad \left(\Phi^T_{V_2} \right)_{uv} = 0.
\end{align*}
\]

(4.14)

The normal vector field of the surface \(\Phi^T_{V_2}(s, \nu) \) is obtained as:

\[
\mathcal{U}^T_{V_2} = \frac{-\xi_2 T(s) + \nu \xi_2 V_1(s)}{\xi'_2 + \nu \xi_2^3}.
\]

With the aforementioned equation, we can obtain the first and second fundamental forms of \(\Phi^T_{V_2} \)'s component parts as follows:

\[
\begin{align*}
E^T_{V_2} &= \nu^2 \xi_2^2 + \kappa^2, \quad F^T_{V_2} = -\xi_2, \quad G^T_{V_2} = -1. \\
E^T_{V_2} &= \frac{\nu \xi_2 (\xi'_1 + \nu \xi_1 \xi_2) - \xi_1 (\nu \xi_2^3 + \kappa^2)}{\sqrt{\xi'_2 + \nu \xi_2^3}}, \\
F^T_{V_2} &= \frac{-\xi_1 \xi_2}{\sqrt{\xi'_2 + \nu \xi_2^3}}, \quad G^T_{V_2} = 0.
\end{align*}
\]

(4.15)

The Gaussian curvature \(K^T_{V_2} \) and the mean curvature \(H^T_{V_2} \) are determined using the data mentioned above:

\[
\begin{align*}
K^T_{V_2} &= \frac{\xi_1 \xi'_2}{(\xi'_2 + \nu \xi_2^3)^2}, \\
H^T_{V_2} &= \frac{\nu \xi_2 (\xi'_1 + \nu \xi_1 \xi_2) - \xi_1 (\nu \xi_2^3 + \kappa^2) - \xi_1 \xi_2^2}{2(\xi'_2 + \nu \xi_2^3)^\frac{3}{2}}.
\end{align*}
\]

(4.17)

However, by applying the RMDF (3.2) and differentiating the second equation in (4.12) with regard to \(s \) and \(\nu \), respectively, we obtain

\[
\begin{align*}
\left(\Phi^V_T \right)_s &= \xi_2 T(s) + \nu \xi_1 V_1(s) + \nu \xi_2 V_2(s), \\
\left(\Phi^V_T \right)_\nu &= T(s).
\end{align*}
\]

(4.18)

\[
\begin{align*}
\left(\Phi^V_T \right)_{ss} &= [\xi'_2 + \nu \kappa^2] T(s) + [\nu \xi'_1 + \xi_1 \xi_2] V_1(s) + [\nu \xi'_2 + \xi_2^3] V_2(s), \\
\left(\Phi^V_T \right)_{su} &= \xi_1 V_1(s) + \xi_2 V_2(s), \quad \left(\Phi^V_T \right)_{uv} = 0.
\end{align*}
\]

(4.19)

The normal vector field of the surface \(\Phi^V_T(s, \nu) \) is obtained as:

\[
\mathcal{U}^V_T(s, \nu) = \frac{\xi_1 V_1(s) - \xi_2 V_2(s)}{\sqrt{\xi'_2 - \xi_1^2}}.
\]
The \(\Phi_{V_2} \)'s component of the first and second fundamental forms are obtained as:

\[
E_{V_2}^T = \xi_2^2 - \nu^2 \kappa_2^2, \quad F_{V_2}^T = \xi_2, \quad G_{V_2}^T = 1. \quad (4.20)
\]

\[
e_{V_2}^T = \frac{\xi_2(\nu \xi_1' + \xi_1 \xi_2) - \xi_1(\nu \xi_2' + \xi_2^2)}{\sqrt{\xi_2^2 - \xi_1^2}}, \quad (4.21)
\]

\[
f_{V_2}^T = 0, \quad g_{V_2}^T = 0.
\]

So, the Gaussian curvature and the mean curvature are given by

\[
K_{V_2}^T = 0, \quad H_{V_2}^T = \frac{\xi_2(\nu \xi_1' + \xi_1 \xi_2) - \xi_1(\nu \xi_2' + \xi_2^2)}{2\nu^2 \kappa_2 ^2 \sqrt{\xi_2^2 - \xi_1^2}}. \quad (4.22)
\]

For \(\xi_1 = 0 \) and \(\xi_2 \neq 0 \) or \(\xi_1 \neq 0 \) and \(\xi_2 = 0 \) the proof is completed. \(\Box \)

As a consequence of Theorem 4.2, we obtain the following results:

Corollary 4.4. Let \(\phi = \phi(s) \) be a unit speed spacelike curve lying fully on a timelike surface \(\Psi \) in \(E_1^3 \) via to RMDF (3.2). Then the \(s \)-parameter curves of \(TV_2 \)-imbricate-ruled surfaces (4.12) are not geodesic and asymptotic curves.

Corollary 4.5. Let \(\phi = \phi(s) \) be a unit speed spacelike curve lying fully on a timelike surface \(\Psi \) in \(E_1^3 \) via to RMDF (3.2). Then the \(\nu \)-parameter curves of \(TV_2 \)-imbricate-ruled surfaces (4.12) are geodesic and asymptotic curves.

Corollary 4.6. Let \(\phi = \phi(s) \) be a unit speed spacelike curve lying fully on a timelike surface \(\Psi \) in \(E_1^3 \) via to RMDF (3.2). Then the \(s \) and \(\nu \)-parameter curves of \(TV_2 \)-imbricate-ruled surfaces (4.12) are principal curves iff \(\theta(s) = \tanh^{-1} \left(\frac{K_n}{k_g} \right) \) or \(\theta(s) = \tanh^{-1} \left(\frac{k_g}{K_n} \right) \).

Remark 4.1. The proof of Corollaries 4.4, 4.5 and 4.6 is similar to the proof of Corollaries 4.1, 4.2 and 4.3.

Definition 4.3. For a regular spacelike curve \(\phi = \phi(s) \) with timelike binormal vector and lying fully on a timelike surface \(\Psi \) in \(E_1^3 \). The \(V_1 V_2 \)-imbricate-ruled surfaces via RMDF (3.2) of \(\phi(s) \) is defined by

\[
\Phi_{V_1}(s,v) = V_1(s) + v V_2(s), \quad (4.23)
\]

\[
\Phi_{V_2}(s,v) = V_2(s) + v V_1(s).
\]

Theorem 4.3. Let \(\phi = \phi(s) \) be a unit speed spacelike curve lying fully on a timelike surface \(\Psi \) in \(E_1^3 \) via to RMDF (3.2). Then \(V_1 V_2 \)-imbricate-ruled surfaces (4.23) are developable surfaces.

Proof. Using (3.2) and differentiating the first equation (4.23) with regard to \(s \) and \(v \), we get

\[
\left(\Phi_{V_2}^V \right)_s = -(\xi_1 - v \xi_2) T(s),
\]

\[
\left(\Phi_{V_2}^V \right)_v = V_2(s). \quad (4.24)
\]
The normal vector field of the surface $\Phi_{V_1}^{V_1}(s, \upsilon)$ is obtained as:

$$\mathbf{U}_{V_1}^{V_1}(s, \upsilon) = -V_1(s).$$

With the aforementioned equation, we can obtain the first and second fundamental forms of $\Phi_{V_1}^{V_1}$'s component parts as follows:

$$E_{V_1}^{V_1} = (\xi_1 - \upsilon \xi_2)^2, \quad F_{V_1}^{V_1} = 0, \quad G_{V_1}^{V_1} = -1.$$

$$e_{V_1}^{V_1} = \xi_1(\xi_1 - \upsilon \xi_2), \quad f_{V_1}^{V_1} = 0, \quad g_{V_1}^{V_1} = 0.$$

The Gaussian curvature $K_{V_1}^{V_1}$ and the mean curvature $H_{V_1}^{V_1}$ are determined using the data mentioned above:

$$K_{V_1}^{V_1} = 0,$$

$$H_{V_1}^{V_1} = \frac{\xi_1}{2(\xi_1 - \upsilon \xi_2)}. \tag{4.28}$$

However, by applying the RMDF (3.2) and differentiating the second equation in (4.23) with regard to s and υ, respectively, we obtain

$$\begin{align*}
\left(\Phi_{V_1}^{V_1}\right)_s &= (\xi_1 - \upsilon \xi_2)T(s), \\
\left(\Phi_{V_1}^{V_1}\right)_\upsilon &= V_1(s). \tag{4.29}
\end{align*}$$

$$\begin{align*}
\left(\Phi_{V_1}^{V_2}\right)_s &= (\xi_2 - \upsilon \xi_1)T(s) + \xi_1(\xi_2 - \upsilon \xi_1)V_1(s) + \xi_2(\xi_2 - \upsilon \xi_1)V_1(s), \\
\left(\Phi_{V_1}^{V_2}\right)_\upsilon &= -\xi_1 T(s), \quad \left(\Phi_{V_1}^{V_2}\right)_s = 0. \tag{4.30}
\end{align*}$$

The normal vector field of the surface $\Phi_{V_1}^{V_2}(s, \upsilon)$ is obtained as:

$$\mathbf{U}_{V_1}^{V_2}(s, \upsilon) = V_2(s).$$

The $\Phi_{V_1}^{V_2}$'s component of the first and second fundamental forms are obtained as:

$$E_{V_1}^{V_2} = (\xi_2 - \upsilon \xi_1)^2, \quad F_{V_1}^{V_2} = 0, \quad G_{V_1}^{V_2} = 1.$$

$$e_{V_1}^{V_2} = -(\xi_2 - \upsilon \xi_1), \quad f_{V_1}^{V_2} = 0, \quad g_{V_1}^{V_2} = 0.$$

So, the Gaussian curvature and the mean curvature are given by

$$K_{V_1}^{V_2} = 0,$$

$$H_{V_1}^{V_2} = -\frac{1}{2(\xi_2 - \upsilon \xi_1)}. \tag{4.33}$$

\square
Corollary 4.7. Let \(\phi = \phi(s) \) be a unit speed spacelike curve lying fully on a timelike surface \(\Psi \) in \(E^3_1 \) via to RMDF (3.2). Then \(V_1V_2 \)-imbricate-ruled surfaces (4.23) has constant mean curvature iff

i. \(\frac{\xi_1}{\xi_2} = \frac{2\nu c}{2c - 1} \) for some non-zero constant \(c \neq \frac{1}{2} \),

ii. \(\xi_2 - \nu \xi_1 = c \) for some non-zero constant \(c \).

Corollary 4.8. Let \(\phi = \phi(s) \) be a unit speed spacelike curve lying fully on a timelike surface \(\Psi \) in \(E^3_1 \) via to RMDF (3.2). Then \(\nu \)-parameter curves of \(V_1V_2 \)-imbricate-ruled surfaces (4.23) are geodesic curves iff one of the following conditions holds

i. \(\theta(s) = \tanh^{-1} \left(\frac{k_n}{k_g} \right) \) and \(\xi_1 \) is non-zero constant,

ii. \(\theta(s) = \tanh^{-1} \left(\frac{k_g}{k_n} \right) \) and \(\xi_2 \) is non-zero constant.

Corollary 4.9. Let \(\phi = \phi(s) \) be a unit speed spacelike curve lying fully on a timelike surface \(\Psi \) in \(E^3_1 \) via to RMDF (3.2). Then \(\nu \)-parameter curves of \(V_1V_2 \)-imbricate-ruled surfaces (4.23) are asymptotic curves iff one of the following conditions holds

i. \(\theta(s) = \tanh^{-1} \left(\frac{k_g}{k_n} \right) \) and \(\xi_2 = \nu \xi_1 \),

ii. \(\theta(s) = \tanh^{-1} \left(\frac{k_n}{k_g} \right) \) and \(\xi_1 = \nu \xi_2 \).

Corollary 4.10. Let \(\phi = \phi(s) \) be a unit speed spacelike curve lying fully on a timelike surface \(\Psi \) in \(E^3_1 \) via to RMDF (3.2). Then the \(\nu \)-parameter curves of \(V_1V_2 \)-imbricate-ruled surfaces (4.23) are geodesic and asymptotic curves.

Corollary 4.11. Let \(\phi = \phi(s) \) be a unit speed spacelike curve lying fully on a timelike surface \(\Psi \) in \(E^3_1 \) via to RMDF (3.2). Then the \(s \) and \(\nu \)-parameter curves of \(V_1V_2 \)-imbricate-ruled surfaces (4.23) are principal curves.

5. Example

Take into account that a spacelike curve with timelike binormal vector in \(E^3_1 \) parameterized (see Figure 2(a))
\[\phi(s) = (cosh \, s, sinh \, s, 0) \]
lying fully on a timelike ruled surface is given by the equation (see Figure 2(b))
\[\Theta(s, \nu) = \left(cosh \, u - \frac{\nu}{\sqrt{2}} \sinh \, u, \sinh \, u + \frac{\nu}{\sqrt{2}} \cosh \, u, \frac{\nu}{\sqrt{2}} \right). \]

So, the Darboux frame of \(\varphi \) can be written as:

\[T(s) = (cosh \, s, sinh \, s, 0), \]
\[\overline{N}(s) = (0, 0, 1), \]
\[P(s) = (cosh \, s, sinh \, s, 0). \]
Then, we have
\[\kappa_n = 1, \quad \kappa_g = \tau_g = 0. \]

Then \(\theta(s) = \theta_0 \) is a constant. Moreover,
\[V_1(s) = (\cosh s \sinh \theta_0, \sinh s \sinh \theta_0, \cosh \theta_0), \]
\[V_2(s) = (\cosh s \cosh \theta_0, \sinh s \cosh \theta_0, \sinh \theta_0). \]

Consequently, the parametric of imbricate-ruled surfaces can be given as (see Figures 2, 3 and 4).
\[
\begin{align*}
\Phi_{V_1}^V &= (\sinh s + \nu \cosh s \sinh \theta_0, \cosh s + \nu \sinh s \sinh \theta_0, \nu \cosh \theta_0), \\
\Phi_{V_1}^T &= (\cosh s \sinh \theta_0 + \nu \sinh s, \sinh s \sinh \theta_0 + \nu \cosh s, \cosh \theta_0). \\
\Phi_{V_2}^V &= (\sinh s + \nu \cosh s \cosh \theta_0, \cosh s + \nu \sinh s \cosh \theta_0, \nu \sinh \theta_0), \\
\Phi_{V_2}^T &= (\cosh s \cosh \theta_0 + \nu \sinh s, \sinh s \cosh \theta_0 + \nu \cosh s, \sinh \theta_0). \\
\Phi_{V_1}^V &= (\cosh s \sinh \theta_0 + \nu \cosh s \cosh \theta_0, \sinh s \sinh \theta_0 + \nu \sinh s \cosh \theta_0, \cosh \theta_0 + \nu \sinh \theta_0), \\
\Phi_{V_1}^T &= (\cosh s \cosh \theta_0 + \nu \cosh s \sinh \theta_0, \sinh s \cosh \theta_0 + \nu \sinh s \sinh \theta_0, \sinh \theta_0 + \nu \cosh \theta_0).
\end{align*}
\]
Figure 2. In (a), the ruled surfaces $\Phi_{V_1}^{T}$; in (b) the ruled surfaces $\Phi_{V_1}^{T}$; in (c) TV_1-imbricate ruled surfaces.

Figure 3. In (a), the ruled surfaces $\Phi_{V_2}^{T}$; in (b) the ruled surfaces $\Phi_{V_2}^{T}$; in (c) TV_2-imbricate ruled surfaces.
Figure 4. In (a), the ruled surfaces Φ_{V_1}; in (b) the ruled surfaces Φ_{V_2}; in (c) V_1V_2-imbricate ruled surfaces.

Conclusion

Recently, numerous researchers have used the Bishop frame and Darboux frame to investigate curves and surfaces, just as they did with the Frenet frame. Recently, the idea of a B-Darboux frame was demonstrated; further investigation may be conducted in the future. The rotation minimizing-Darboux frame (RMDF) that we develop in this paper travels along a spacelike curve that fully encircles a timelike surface in E^3_1. We also demonstrate how to use RMDF on imbricate-ruled surfaces.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgements

This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RG23085).

Conflicts of interest

The authors declare no competing interest.

References

© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)