Research article

Characterizations of intra-regular LA-semihyperrings in terms of their hyperideals

Warud Nakkhasen*

Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand

* Correspondence: Email address of corresponding author; warud.n@msu.ac.th

Abstract: The purpose of this article is to investigate the class of intra-regular LA-semihyperrings. Then, characterizations of intra-regular LA-semihyperrings by the properties of many types of their hyperideals are obtained. Moreover, we present a construction of LA-semihyperrings from ordered LA-semirings.

Keywords: LA-semihypergroup; LA-semihyperring; intra-regular LA-semihyperring

Mathematics Subject Classification: 20M17, 20N20, 16Y60

1. Introduction

The algebraic structure of left almost semigroups (for short, LA-semigroups), which is a generalization of commutative semigroups, was first introduced by Kazim and Naseeruddin [20] in 1972. An Abel-Grassmann groupoid (for short, AG-groupoid) is another name for it [34]. A non-associative and a non-commutative algebraic structure that lies midway between a groupoid and a commutative semigroup is known as an LA-semigroup. Regularities are interesting and important properties to examine in LA-semigroups. In 2010, Khan and Asif [22] characterized intra-regular LA-semigroups by the properties of their fuzzy ideals. Later, Abdullah et al. [1] discussed characterizations of regular LA-semigroups using interval valued \((\alpha,\beta)\)-fuzzy ideals. Also, Khan et al. [24] characterized right regular LA-semigroups using their fuzzy left ideals and fuzzy right ideals. In 2016, Khan et al. [26] characterized the class of \((m,n)\)-regular LA-semigroups by their \((m,n)\)-ideals. Some characterizations of weakly regular LA-semigroups by using the smallest ideals and fuzzy ideals of LA-semigroups are investigated by Yousafzai et al. [46]. In addition, Sezer [37] have used the concept of soft sets to characterize regular, intra-regular, completely regular, weakly regular and quasi-regular LA-semigroups. Now, many mathematicians have investigated various characterizations of LA-semigroups (see, e.g., [3, 9, 47]). Furthermore, some mathematicians have considered the notion of left almost semirings...
(for short, LA-semirings), that is a generalization of left almost rings (for short, LA-rings) [38], to have different features. In 2021, the left almost structures are now widely studied such as Elmoasry [14] studied the concepts of rough prime and rough fuzzy prime ideals in LA-semigroups, Massouros and Yaqoob [28] investigated the theory of left and right almost groups and focused on more general structures, and Rehman et al. [35] introduced the notion of neutrosophic LA-rings and discussed various types of ideals and establish several results to better understand the characteristic behavior of neutrosophic LA-rings. In addition, the concept of left almost has been investigated in various algebraic structures (for example, in ordered LA-semigroups [6, 19, 45], in ordered LA-Γ-semigroups [8], in gamma LA-rings and gamma LA-semigroups [25], in LA-polygroups [2, 41, 43]).

Marty [27] introduced the concept of hyperstructures, as a generalization of ordinary algebraic structures. The composition of two elements in an ordinary algebraic structure is an element, but in an algebraic hyperstructure, the composition of two elements is a nonempty set. Many authors have developed on the concept of hyperstructures (see, e.g., [4, 12, 39]). Rehman et al. [36] introduced the concept of left almost hypergroups (for short, LA-hypergroups) and gave the examples of LA-hypergroups. Moreover, they introduced the concept of LA-hyperrings and characterized LA-hyperrings by their hyperideals and hypersystems. Next, the concept of weak LA-hyperrings was investigated by Nawaz et al. [32]. In 2020, Hu et al. [18] extended the notion of neutrosophic to LA-hypergroups and strong pure LA-semihypergroups. The concept of left almost semihypergroups (for short, LA-semihypergroups) is a generalization of LA-semigroups and commutative semihypergroups developed by Hila and Dine [17]. An LA-semihypergroup is a non-associative and non-commutative hyperstructure midway between a hypergroupoid and a commutative semihypergroup. Yaqoob et al., [42] have characterized intra-regular LA-semihypergroups by using the properties of their left and right hyperideals. Then, Gulistan et al. [15] defined the class of regular LA-semihypergroups in terms of \((e \tau, e \Gamma \lor q \Delta)-\)cubic (resp., left, right, two-sided, bi, generalized bi, interior, quasi) hyperideals of LA-semihypergroups. Furthermore, Khan et al. [23] investigated some properties of fuzzy left hyperideals and fuzzy right hyperideals in regular and intra-regular LA-semihypergroups. Meanwhile, the notion of ordered LA-semihypergroups which is a generalization of LA-semihypergroups was introduced by Yaqoob and Gulistan [44]. Also, Azhar et al. discussed some results related with fuzzy hyperideals and generalized fuzzy hyperideals of ordered LA-semihypergroups [7, 16].

It is known that every semiring can be considered to be a semihyperring. This implies that some results in intra-regular semihyperrings generalized the results in intra-regular semirings. The class of intra-regular semihyperrings was investigated by Nakkhasen and Pibaljommee [31] in 2019. Afterward, Nawaz et al. [33] introduced the notion of left almost semihyperrings (for short, LA-semihyperrings), which is a generalization of LA-semirings. Recently, Nakkhasen [30] characterized some classes of regularities in LA-semihyperrings, that is, weakly regular LA-semihyperrings and regular LA-semihyperrings by the properties of their hyperideals. In this paper, we are interested in the class of intra-regular LA-semihyperrings. Then, we give some characterizations of intra-regular LA-semihyperrings by means of their hyperideals. In addition, we show how ordered LA-semirings can be used to create LA-semihyperrings.
2. Preliminaries

First, we will review some fundamental notions and properties that are needed for this study. Let H be a nonempty set. Then, the mapping $\circ : H \times H \to \mathcal{P}(H)$ is called a hyperoperation (see, e.g., [10, 11, 40]) on H where $\mathcal{P}(H) = \mathcal{P}(H) \setminus \{\emptyset\}$ denotes the set of all nonempty subsets of H. A hypergroupoid is a nonempty set H together with a hyperoperation \circ on H. If $x \in H$ and A, B are two nonempty subsets of H, then we denote

$$A \circ B = \bigcup_{a \in A, b \in B} a \circ b, A \circ x = A \circ \{x\} \text{ and } x \circ B = \{x\} \circ B.$$

A hypergroupoid (H, \circ) is called an LA-semihypergroup [17] if for all $x, y, z \in H, (x \circ y) \circ z = (z \circ y) \circ x$. This law is known as a left invertive law. For any nonempty subsets A, B and C of an LA-semihypergroup (H, \circ), we have that $(A \circ B) \circ C = (C \circ B) \circ A$.

A hyperstructure $(S, +, \cdot)$ is called an LA-semihyperring [33] if it satisfies the following conditions:

(i) $(S, +)$ is an LA-semihypergroup;

(ii) (S, \cdot) is an LA-semihypergroup;

(iii) $x \cdot (y + z) = x \cdot y + x \cdot z$ and $(y + z) \cdot x = y \cdot x + z \cdot x$ for all $x, y, z \in S$.

Example 2.1. Let \mathbb{Z} be the set of all integers. The hyperoperations \ominus and \odot on \mathbb{Z} are defined by $x \ominus y = \{y - x\}$ and $x \odot y = \{xy\}$ for all $x, y \in \mathbb{Z}$, respectively. We have that $(\mathbb{Z}, \ominus, \odot)$ is an LA-semihyperrings.

Example 2.2. [36] Let $S = \{a, b, c\}$ be a set with the hyperoperations $+$ and \cdot on S defined as follows:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>${a}$</td>
<td>${a, b, c}$</td>
<td>${a, b, c}$</td>
</tr>
<tr>
<td>b</td>
<td>${a, b, c}$</td>
<td>${b, c}$</td>
<td>${b, c}$</td>
</tr>
<tr>
<td>c</td>
<td>${a, b, c}$</td>
<td>${a, b, c}$</td>
<td>${a, b, c}$</td>
</tr>
</tbody>
</table>

Then, $(S, +, \cdot)$ is an LA-semihyperring.

Throughout this paper, we say an LA-semihyperring S instead of an LA-semihyperring $(S, +, \cdot)$ and we write xy instead of $x \cdot y$ for any $x, y \in S$.

The concepts listed below will be considered in this research, as they occurred in [33]. For any LA-semihyperring S, the medial law $(xy)(zw) = (xz)(yw)$ holds for all $x, y, z, w \in S$. An element e of an LA-semihyperring S is called a left identity (resp., pure left identity) if for all $x \in S$, $x \cdot e = e$. We have that $S^2 = S$, for any LA-semihyperring S with a left identity e. If an LA-semihyperring S contains a pure left identity e, then it is unique. In an LA-semihyperring S with a pure left identity e, the paramedial law $(xy)(zw) = (wy)(zx)$ holds for all $x, y, z, w \in S$. An element a of an LA-semihyperring S with a left identity (resp., pure left identity) e is called a left invertible (resp., pure left invertible) if there exists $x \in S$ such that $e \cdot xa$ (resp., $e = xa$). An LA-semihyperring S is called a left invertible (resp., pure left invertible) if every element of S is a left invertible (resp., pure left invertible). We observe that if an element e is a pure left identity of an LA-semihyperring S, then e is also a left identity, but the converse is not true in general, see in [30].

Lemma 2.3. [33] If S is an LA-semihyperring with a pure left identity e, then $x(yz) = y(zx)$ for all $x, y, z \in S$.

AIMS Mathematics
Let S be an LA-semihyperring. Then, the following law holds \((AB)(CD) = (AC)(BD)\) for all nonempty subsets \(A, B, C, D\) of \(S\). If an LA-semihyperring \(S\) contains the pure left identity \(e\), then \((AB)(CD) = (DB)(CA)\) and \(A(BC) = B(AC)\) for every nonempty subsets \(A, B, C, D\) of \(S\).

Let \(S\) be an LA-semihyperring and a nonempty subset \(A\) of \(S\) such that \(A + A \subseteq A\). Then:

(i) \(A\) is called a left hyperideal [33] of \(S\) if \(SA \subseteq A\);
(ii) \(A\) is called a right hyperideal [33] of \(S\) if \(AS \subseteq A\);
(iii) \(A\) is called a hyperideal [33] of \(S\) if it is both a left and a right hyperideal of \(S\);
(iv) \(A\) is called a quasi-hyperideal [33] of \(S\) if \(SA \cap AS \subseteq A\);
(v) \(A\) is called a bi-hyperideal [33] of \(S\) if \(AA \subseteq A\) and \((AS)A \subseteq A\).

\section*{Example 2.4.}
Let \(S = \{a, b, c, d\}\). Define hyperoperations + and \(\cdot\) on \(S\) by the following tables:

\[
\begin{array}{c|cccc}
+ & a & b & c & d \\
\hline
a & \{a\} & \{a, b\} & \{c\} & \{d\} \\
b & \{a, b\} & \{a, b\} & \{c\} & \{d\} \\
c & \{c\} & \{c\} & \{c\} & \{d\} \\
d & \{d\} & \{d\} & \{d\} & \{d\}
\end{array}
\quad
\begin{array}{c|cccc}
\cdot & a & b & c & d \\
\hline
a & \{a\} & \{a\} & \{a\} & \{a\} \\
b & \{a\} & \{a\} & \{a\} & \{a\} \\
c & \{a, a\} & \{a, a\} & \{a, a\} & \{a, b\} \\
d & \{a, a\} & \{a, b\} & \{a, b\} & \{a, b\}
\end{array}
\]

We can see that \((S, +, \cdot)\) is an LA-semihyperring. Consider \(A = \{a, b, c\}\) and \(B = \{a, c\}\). It is easy to see that \(A\) is a quasi-hyperideal of \(S\). In addition, \(B\) is a bi-hyperideal of \(S\), but it is not a quasi-hyperideal of \(S\) because \(SB \cap BS = \{a, b\} \not\subseteq B\).

A nonempty subset \(G\) of an LA-semihyperring \(S\) is called a generalized bi-hyperideal of \(S\) if \(G + G \subseteq G\) and \((GS)G \subseteq G\). Obviously, every bi-hyperideal of an LA-semihyperring \(S\) is a generalized bi-hyperideal, but the converse is not true in general. We can show this with the following example.

\section*{Example 2.5.}
From Example 2.4, consider \(G = \{a, c, d\}\). It is not difficult to show that \(G\) is a generalized bi-hyperideal of \(S\). But \(G\) is not a bi-hyperideal of \(S\), because \(c \cdot d = \{a, b\} \not\subseteq G\).

An ordered LA-semiring is a system \((S, +, \cdot, \leq)\) consisting of a nonempty set \(S\) such that \((S, +, \cdot)\) is an LA-semiring, \((S, \leq)\) is a partially ordered set, and for every \(a, b, x \in S\) the following conditions are satisfied: (i) if \(a \leq b\), then \(a + x \leq b + x\) and \(x + a \leq x + b\); (ii) if \(a \leq b\), then \(a \cdot x \leq b \cdot x\) and \(x \cdot a \leq x \cdot b\).

For an ordered LA-semiring \((S, +, \cdot, \leq)\) and \(x \in S\), we denote \((\cdot) = \{s \in S \mid s \leq x\}\).

In 2014, Amjad and Yousefzai [5] have shown that every ordered LA-semigroup \((S, \cdot, \leq)\) can be considered as an LA-semihypergroup \((S, \circ)\) where a hyperoperation \(\circ\) on \(S\) defined by

\[
a \circ b = \{x \in S \mid x \leq a \cdot b\} = (a \cdot b)\]

for all \(a, b \in S\).

Now, we apply this idea to construct an LA-semihyperring from an ordered LA-semiring as the following lemma.

\section*{Lemma 2.6.}
Let \((S, +, \cdot, \leq)\) be an ordered LA-semiring. Then \((S, \oplus, \odot)\) is an LA-semihyperring where the hyperoperations \(\oplus\) and \(\odot\) on \(S\) are defined by letting \(a, b \in S\),

\[
a \oplus b = \{x \in S \mid x \leq a + b\} = (a + b)\quad\text{and}\quad a \odot b = \{x \in S \mid x \leq a \cdot b\} = (a \cdot b).
\]

\textbf{Proof.}\ By the Example in [5], it follows that \((S, \oplus)\) and \((S, \odot)\) are LA-semihypergroups. Next, we will show that the hyperoperation \(\odot\) is distributive with respect to the hyperoperation \(\oplus\) on \(S\). First, we
claim that \(a \odot (b \oplus c) = (a \cdot (b + c)) \). Let \(t \in a \odot (b \oplus c) \). Then, \(t \in a \odot x \) for some \(x \in b \oplus c \). So, \(t \leq a \cdot x \leq a \cdot (b + c) \), then \(t \in (a \cdot (b + c)) \). Hence, \(a \odot (b \oplus c) \subseteq (a \cdot (b + c)) \). Let \(s \in (a \cdot (b + c)) \). Then, \(s \leq a \cdot (b + c) \), and so

\[
s \in a \odot (b + c) \subseteq \bigcup_{x \in b \oplus c} a \odot x = a \odot (b \oplus c).
\]

That is, \((a \cdot (b + c)) \subseteq a \odot (b \oplus c)\). It follows that \(a \odot (b \oplus c) = (a \cdot (b + c)) \). Next, we show that \((a \odot b) \oplus (a \odot c) = (a \cdot b + a \cdot c)\). Let \(t \in (a \odot b) \oplus (a \odot c) \). Then \(t \in x \oplus y \) for some \(x \in a \odot b \) and \(y \in a \odot c \). This implies that \(t \leq x + y \leq a \cdot b + a \cdot c \). Thus, \(t \in (a \cdot b + a \cdot c) \). Hence, \((a \odot b) \oplus (a \odot c) \subseteq (a \cdot b + a \cdot c)\). Let \(s \in (a \cdot b + a \cdot c) \). Then

\[
s \in a \cdot b + a \cdot c \subseteq \bigcup_{x \in a \odot b, y \in a \odot c} x \oplus y = (a \odot b) \oplus (a \odot c).
\]

Hence, \((a \cdot b + a \cdot c) \subseteq (a \odot b) \oplus (a \odot c)\). Therefore, \((a \odot b) \oplus (a \odot c) = (a \cdot b + a \cdot c)\). Since \((a \cdot (b + c)) = (a \cdot b + a \cdot c)\), we obtain that \(a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)\). Similarly, we can show that \((b \oplus c) \odot a = (b \odot a) \oplus (c \odot a)\). Consequently, \((S, \oplus, \odot)\) is an \(LA\)-semihyperring.

Example 2.7. Let \(S = \{a, b, c\} \) be a set with two binary operations \(+\) and \(\cdot\) on \(S \) defined as follows:

\[
\begin{array}{ccc}
+ & a & b & c \\
\hline
a & a & a & a \\
b & a & a & c \\
c & a & a & a \\
\end{array}
\quad
\begin{array}{ccc}
\cdot & a & b & c \\
\hline
a & a & a & a \\
b & a & a & c \\
c & a & a & a \\
\end{array}
\]

Then, \((S, +, \cdot)\) is an \(LA\)-semiring \([29]\). We define an order relation \(\leq\) on \(S \) by

\[
\leq = \{(a, a), (b, b), (c, c), (a, b), (a, c)\}.
\]

The figure of \(\leq\) on \(S \) is given by

\[
\begin{tikzpicture}
\node (a) at (0, 0) {a};
\node (b) at (1, 1) {b};
\node (c) at (2, 1) {c};
\draw (a) -- (b);
\draw (a) -- (c);
\end{tikzpicture}
\]

It is a routine matter to check that \((S, +, \cdot, \leq)\) is an ordered \(LA\)-semiring. We obtain that its associated \(LA\)-semihyperring \((S, \oplus, \odot)\) where \(\oplus\) and \(\odot\) are defined by Lemma 2.6 as follows:

\[
\begin{array}{ccc}
\oplus & a & b & c \\
\hline
a & \{a\} & \{a\} & \{a\} \\
b & \{a\} & \{a, c\} & \{b\} \\
c & \{a\} & \{a\} & \{c\} \\
\end{array}
\quad
\begin{array}{ccc}
\odot & a & b & c \\
\hline
a & \{a\} & \{a\} & \{a\} \\
b & \{a\} & \{a\} & \{a, c\} \\
c & \{a\} & \{a\} & \{a\} \\
\end{array}
\]

Now, we can see that \(A = \{a, b\} \) is a left hyperideal of \(S \), but it is not a right hyperideal of \(S \) because \(b \odot c = \{a, c\} \not\subseteq A \).

Lemma 2.8. \([30]\) Let \(S \) be an \(LA\)-semihyperring with a pure left identity \(e \). Then every right hyperideal of \(S \) is a hyperideal of \(S \).
Lemma 2.9. [30] Every left (resp., right) hyperideal of an LA-semihyperring S is a quasi-hyperideal of S.

Lemma 2.10. Every left (resp., right) hyperideal of an LA-semihyperring S is a bi-hyperideal of S.

Proof. Let B be a left hyperideal of an LA-semihyperring S. Then, $BB \subseteq SB \subseteq B$, and so $(BS)B \subseteq SB \subseteq B$. Thus, B is a bi-hyperideal of S. For the case right hyperideals, we can prove similarly. □

Lemma 2.11. [30] Let S be an LA-semihyperring with a left identity e such that $(xe)S \subseteq xS$ for all $x \in S$. Then every quasi-hyperideal of S is a bi-hyperideal of S.

Lemma 2.12. [30] If S is an LA-semihyperring with a pure left identity e, then for every $a \in S$, a^2S is a hyperideal of S such that $a^2 \subseteq a^2S$.

Lemma 2.13. If S is an LA-semihyperring with a left identity e, then for every $a \in S$, Sa is a left hyperideal of S such that $a \in Sa$.

Proof. Assume that S is an LA-semihypering with a left identity e. Let $a \in S$. Then, $a \in ea \subseteq Sa$ and $Sa + Sa = (S + S)a \subseteq Sa$. Now, by using paramedial law and left invertive law, we have

$$S(Sa) \subseteq (eS)(Sa) = (aS)(Se) = ((Se)S)a \subseteq Sa.$$

It follows that Sa is a left hyperideal of S. □

Let J be a finite nonempty subset of \mathbb{N} such that $J = \{j_1, j_2, j_3, \ldots, j_n\}$, where $j_1, j_2, j_3, \ldots, j_n \in \mathbb{N}$. For any $a \in S$, we denote

$$\sum_{i \in I} a_i = (\cdots ((a_{j_i} + a_{j_{i+1}}) + a_{j_{i+2}}) + \cdots) + a_{j_n}.$$

For any nonempty subsets A and B of LA-semihyperring S and $a \in S$, we denote

$$\Sigma A = \{t \in S \mid t \in \sum_{i \in I} a_i, a_i \in A \text{ and } I \text{ is a finite nonempty subset of } \mathbb{N}\},$$

$$\Sigma AB = \{t \in S \mid t \in \sum_{i \in I} a_ib_i, a_i \in A, b_i \in B \text{ and } I \text{ is a finite nonempty subset of } \mathbb{N}\},$$

$$\Sigma a = \Sigma \{a\}.$$

Remark 1. Let A and B be any nonempty subsets of an LA-semihyperring S. Then the following statements hold:

(i) $A \subseteq \Sigma A$;

(ii) $A(\Sigma B) \subseteq \Sigma AB$ and $(\Sigma A)B \subseteq \Sigma AB$.

Lemma 2.14. Let A be any nonempty subset of an LA-semihyperring S. If $A + A \subseteq A$, then $\Sigma A = aA$ and $\Sigma a = aA$ for all $a \in S$.

AIMS Mathematics Volume 1, Issue x, xxx–xxx
3. Characterizations of intra-regular LA-semihyperrings

In this section, we apply the concept of intra-regular LA-rings, defined in [21], to define the notion of intra-regular LA-semihyperrings and study some of its properties. Finally, we give some characterizations of intra-regular LA-semihyperrings by the properties of many types of hyperideals of LA-semihyperrings.

Definition 3.1. An LA-semihyperring S is said to be intra-regular if for every $a \in S$, $a \in \Sigma(Sa^2)S$.

Example 3.2. Let $S = \{a, b, c\}$ be a set with the hyperoperations $+$ and \cdot on S defined as follows:

<table>
<thead>
<tr>
<th>$+$</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>${a}$</td>
<td>${a, b, c}$</td>
<td>${a, b, c}$</td>
</tr>
<tr>
<td>b</td>
<td>${b, c}$</td>
<td>${b, c}$</td>
<td>${b, c}$</td>
</tr>
<tr>
<td>c</td>
<td>${a, b, c}$</td>
<td>${a, b, c}$</td>
<td>${a, b, c}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\cdot</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>${a}$</td>
<td>${a}$</td>
<td>${a}$</td>
</tr>
<tr>
<td>b</td>
<td>${a}$</td>
<td>${a, b, c}$</td>
<td>${c}$</td>
</tr>
<tr>
<td>c</td>
<td>${a}$</td>
<td>${a, b, c}$</td>
<td>${a, b, c}$</td>
</tr>
</tbody>
</table>

Then, $(S, +, \cdot)$ is an LA-semihyperring [33]. Now, we can see that S is intra-regular.

However, the set $S = \{a, b, c, d, e\}$ with two hyperoperations \oplus and \odot on S as defined in Example 2.7 is not intra-regular, because $b \notin \{a\} = \Sigma(S \odot b^2) \odot S$.

Proposition 3.3. Every left (resp., right) hyperideal of an intra-regular LA-semihyperring S is a hyperideal of S.

Proof. Let S be an intra-regular LA-semihyperring and $x \in S$. Assume that L is a left hyperideal of S and $a \in L$. Then, $a \in \Sigma(Sa^2)S$. Now, by using Remark 1 and left invertive law, we have

$$ax \subseteq (\Sigma(Sa^2)S)x \subseteq \Sigma((Sa^2)S)x = \Sigma(xS)(Sa^2) \subseteq \Sigma SL \subseteq SL \subseteq L.$$

Thus, L is a right hyperideal of S, and so L is a hyperideal of S. Suppose that R is a right hyperideal of S and $r \in R$. Then,

$$xr \subseteq (\Sigma(Sx^2)S)r \subseteq \Sigma((Sx^2)S)r = \Sigma(rsS)(Sx^2) \subseteq \Sigma RS \subseteq \Sigma R \subseteq R.$$

Hence, R is a left hyperideal of S. It follows that R is a hyperideal of S.

Proposition 3.4. If S is an intra-regular LA-semihyperring with a pure left identity e, then $\Sigma I^2 = I$ for every left hyperideal I of S.

Proof. Assume that S is an intra-regular LA-semihyperring with a pure left identity e. Let I be a left hyperideal of S. Then, $\Sigma I^2 \subseteq I$. Let $a \in I$. By using left invertive law, medial law and Lemma 2.3, we have

$$a \in \Sigma(Sa^2)S = \Sigma(sa)S = \Sigma(s(aS))S = \Sigma(aS)(eS) = \Sigma(aS)S \subseteq \Sigma(Sa)((sa)e) \subseteq \Sigma(SI)(SI) \subseteq \Sigma II = \Sigma I^2.$$

Thus, $I \subseteq \Sigma I^2$. Therefore, $\Sigma I^2 = I$.

A (resp., left, right) hyperideal P of an LA-semihyperring S is called semiprime if for any $a \in S$, $a^2 \subseteq P$ implies $a \in P$.

AIMS Mathematics
Proposition 3.5. Every hyperideal of an intra-regular LA-semihyperring is semiprime.

Proof. Assume that S is an intra-regular LA-semihyperring. Let I be a hyperideal of S and $a \in S$ such that $a^2 \subseteq I$. Then, $a \in \Sigma(Sa^2)S \subseteq \Sigma(SI)S \subseteq \Sigma I = I$. Hence, I is semiprime. □

Proposition 3.6. Let S be an LA-semihyperring S with a pure left identity e. If S satisfies $L \cup R = \Sigma LR$, for every left hyperideal L and every right hyperideal R of S such that R is semiprime, then S is intra-regular.

Proof. Let $a \in S$. By Lemma 2.13 and Lemma 2.12, we have that Sa is a left hyperideal and a^2S is a right hyperideal of S such that $a \in Sa$ and $a^2 \subseteq a^2S$, respectively. Thus, by the given assumption, $a \in a^2S$. Now, by using left invertive law, medial law and Lemma 2.3, we have

$$a \in Sa \cup a^2S = \Sigma(Sa)(a^2S) = \Sigma(Sa)((aa)S) \subseteq \Sigma(Sa)((aS)S) = \Sigma(aS)((Sa)S)$$

$$= \Sigma(a(Sa))(SS) = \Sigma(a(Sa))S = \Sigma(S(aa))S = \Sigma(Sa^2)S.$$

This shows that S is intra-regular. □

Next, we give characterizations of intra-regular LA-semihyperrings by means of (resp., left, right) hyperideals, quasi-hyperideals, bi-hyperideals and generalized bi-hyperideals of LA-semihyperrings as show by the following theorems.

Theorem 3.7. Let S be an LA-semihyperring with a pure left identity e. Then S is intra-regular if and only if $L = L^3$, for every left hyperideal L of S.

Proof. Assume that S is intra-regular. Let L be any left hyperideal of S. Then, $L^3 = (LL)L \subseteq (SL)L \subseteq LL \subseteq L$. Now, let $a \in L$. By Lemma 2.12, a^2S is a hyperideal of S such that $a^2 \subseteq a^2S$. Thus, by given assumption and Proposition 3.5, we have that a^2S is semiprime, and so $a \in a^2S$. Thus, by using left invertive law and Lemma 2.3, we have

$$a \in a^2S = (aa)S = (S(a)a \subseteq (S(a^2S))a = (a^2(S^2S))a = ((aa)S)a$$

$$= ((S(a)a)a \subseteq ((SL)L)L \subseteq (LL)L = L^3.$$

Hence, $L \subseteq L^3$. Therefore, $L = L^3$.

Conversely, assume that $L = L^3$, for every left hyperideal L of S. Let $a \in S$. By Lemma 2.13, Sa is a left hyperideal of S such that $a \in Sa$. Then, by given assumption and using medial law, we have

$$a \in Sa = ((S(a)(S(a)))(Sa) = ((SS)(aa))(Sa) \subseteq (Sa^2)S \subseteq \Sigma(Sa^2)S.$$

This shows that S is intra-regular. □

Theorem 3.8. Let S be a pure left invertible LA-semihyperring with a pure left identity e. Then the following conditions are equivalent:

(i) S is intra-regular;

(ii) $L \cap R \subseteq \Sigma LR$, where L and R are any left and right hyperideals of S, respectively.
Proof. (i) ⇒ (ii) Assume that S is intra-regular. Let L be a left hyperideal and R be a right hyperideal of S, and let $a \in L \cap R$. Then, by using left invertive law and Lemma 2.3, we have
\[a \in \Sigma(Sa^2)S = \Sigma(S(aa))S = \Sigma(a(Sa))S = \Sigma(S(Sa)a) \subseteq \Sigma(S(SL))R \subseteq \Sigma LR. \]

Hence, $L \cap R \subseteq \Sigma LR$.

(ii) ⇒ (i) Assume that (ii) holds. Let $a \in S$. Since S is a pure left invertible, there exists $x \in S$ such that $e = xa$. By Lemma 2.12, a^2S is both a left and a right hyperideal of S such that $a^2 \subseteq a^2S$. Then, by using left interive law, Lemma 2.3 and given assumption, we have
\[a^2 \subseteq a^2S \cap a^2S \subseteq \Sigma(a^2S)(a^2S) = \Sigma a^2((a^2S)S) = \Sigma a^2((SS)a^2) = \Sigma(aa)(S a^2) = \Sigma(S a^2)a. \]

Now, by using left invertive law and Remark 1, we have
\[a = ea = (xa)a = (aa)x \subseteq (\Sigma(Sa^2)a)a)x \subseteq \Sigma((Sa^2)a)x = \Sigma(Sa^2)a \subseteq \Sigma(S a^2)S. \]

Therefore, S is intra-regular. \[\Box\]

Theorem 3.9. Let S be a pure left invertible LA-semihyperring with a pure left identity e. Then the following statements are equivalent:

(i) S is intra-regular;

(ii) $L \cap R = \Sigma LR$, for every left hyperideal L and every right hyperideal R of S.

Proof. (i) ⇒ (ii) Assume that S is intra-regular. Let L and R be a left hyperideal and a right hyperideal of S, respectively. It is easy to see that $\Sigma LR \subseteq L \cap R$. On the other hand, let $a \in L \cap R$. Then, $a \in \Sigma(Sa^2)S$. By using left invertive law, paramedial law and Lemma 2.3, we have
\[a \in \Sigma(Sa^2)S = \Sigma(S(aa))S = \Sigma(a(Sa))S = \Sigma(S(Sa)a) = \Sigma((eS)(Sa)a) = \Sigma((eS)(Sa)a) \subseteq \Sigma((RS)(Sa)L \subseteq \Sigma LR. \]

Hence, $L \cap R \subseteq \Sigma LR$. Therefore, $L \cap R = \Sigma LR$.

(ii) ⇒ (i) This proof is similar to the proof of (ii) ⇒ (i) in Theorem 3.8, because a^2S is both a left hyperideal and a right hyperideal of S. \[\Box\]

Theorem 3.10. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that $(xe)S \subseteq xS$ for all $x \in S$. Then the following statements are equivalent:

(i) S is intra-regular;

(ii) $G \cap I = (GI)G$, for every generalized bi-hyperideal G and every hyperideal I of S;

(iii) $B \cap I = (BI)B$, for every bi-hyperideal B and every hyperideal I of S;

(iv) $Q \cap I = (QI)Q$, for every quasi-hyperideal Q and every hyperideal I of S.

Proof. (i) ⇒ (ii) Assume that S is intra-regular. Let G be a generalized bi-hyperideal and I be a hyperideal of S, and let $a \in G \cap I$. Then, $a \in \Sigma(Sa^2)S$. Now, by using left invertive law and Lemma 2.3, we have
\[a \in \Sigma(Sa^2)S = \Sigma(S(aa))S = \Sigma(a(Sa))S = \Sigma(S(Sa)a). \]
Consider,

\[S(Sa) \subseteq S(S(\Sigma(Sa^2)S)) \subseteq \Sigma S((Sa^2)(S \Sigma S)) = \Sigma S((Sa^2)(S \Sigma S)) \]
\[= \Sigma(Sa^2)(S \Sigma S) \subseteq \Sigma(S(aa))S = \Sigma(a(Sa))S \]
\[= \Sigma(S(Sa))a = (\Sigma S(Sa))a \subseteq S(a). \]

Then, by using (3.1), medial law, Lemma 2.3 and Lemma 2.14, we have

\[S(Sa) \subseteq (\Sigma S(Sa))a \subseteq (\Sigma S(a))a = (S(a))(ea) = (S(e)(aa) = a((S(a))a) \subseteq a(S(a)) \subseteq S(Sa). \]

It follows that \(S(Sa) = a(Sa). \) Thus, \(a \in \Sigma(S(Sa))a = \Sigma(a(Sa))a = (a(Sa))a \subseteq (G(SI))G \subseteq (GI)G. \)

Hence, \(G \cap I \subseteq (GI)G. \) On the other hand, \((GI)G \subseteq (SI)S \subseteq I \) and \((GI)G \subseteq (GS)G \subseteq G, \) that is, \((GI)G \subseteq G \cap I. \) Therefore, \(G \cap I = (GI)G. \)

(ii) \(\Rightarrow \) (iii) Since every bi-hyperideal is a generalized bi-hyperideal of \(S, \) it follows that (iii) holds.

(iii) \(\Rightarrow \) (iv) By Lemma 2.11, we have that every quasi-hyperideal of \(S \) is a bi-hyperideal. Hence, (iv) holds.

(iv) \(\Rightarrow \) (i) Let \(L \) be a left hyperideal and \(R \) be a right hyperideal of \(S. \) By Lemma 2.8 and Lemma 2.9, we have that \(R \) is a hyperideal and \(L \) is a quasi-hyperideal of \(S, \) respectively. By assumption, \(L \cap R = (LR)L \subseteq (SR)R \subseteq RL \subseteq \Sigma RL. \) On the other hand, \(\Sigma RL \subseteq L \cap R. \) Therefore, \(L \cap R = \Sigma R. \) By Theorem 3.9, we have that \(S \) is intra-regular.

Theorem 3.11. Let \(S \) be a pure left invertible LA-semihyperring with a pure left identity \(e \) such that \((xe)S \subseteq xS \) for all \(x \in S. \) Then the following statements are equivalent:

(i) \(S \) is intra-regular;

(ii) \(R \cap G \subseteq \Sigma GR, \) for every generalized bi-hyperideal \(G \) and every right hyperideal \(R \) of \(S; \)

(iii) \(R \cap B \subseteq \Sigma BR, \) for every bi-hyperideal \(B \) and every right hyperideal \(R \) of \(S; \)

(iv) \(R \cap Q \subseteq \Sigma QR, \) for every quasi-hyperideal \(Q \) and every right hyperideal \(R \) of \(S. \)

Proof. (i) \(\Rightarrow \) (ii) Assume that \(S \) is intra-regular. Let \(R \) be a right hyperideal and \(G \) be a generalized bi-hyperideal of \(S, \) and let \(a \in R \cap G. \) Then, \(a \in \Sigma(Sa^2)S. \) Since \(S(Sa) \subseteq S(a), \) left invertive law, medial law and Lemma 2.3, we obtain that

\[a \in \Sigma(Sa^2)S = \Sigma(S(aa))S = \Sigma(a(Sa))S = \Sigma(Sa)a \subseteq \Sigma(Sa)a \]
\[= \Sigma((ae)a) = (S(e)(aa) = a((S(e)a) = a((S(a))a) \subseteq \Sigma G((RS)S) \subseteq \Sigma G(R). \]

Hence, \(R \cap G \subseteq \Sigma GR. \)

(ii) \(\Rightarrow \) (iii) Since every bi-hyperideal is a generalized bi-hyperideal of \(S, \) it follows that (iii) holds.

(iii) \(\Rightarrow \) (iv) By Lemma 2.11, we have that every quasi-hyperideal of \(S \) is a bi-hyperideal. Hence, (iv) holds.

(iv) \(\Rightarrow \) (i) Let \(L \) be a left hyperideal and \(R \) be a right hyperideal of \(S. \) By Lemma 2.9, \(L \) is a quasi-hyperideal of \(S. \) By assumption, \(L \cap R \subseteq \Sigma LR. \) Therefore, \(S \) is intra-regular by Theorem 3.8.

Theorem 3.12. Let \(S \) be a pure left invertible LA-semihyperring with a pure left identity \(e \) such that \((xe)S \subseteq xS \) for all \(x \in S. \) Then the following conditions are equivalent:

AIMS Mathematics

Volume 1, Issue x, xxx–xxx
(i) \(S \) is intra-regular;
(ii) \(R \cap G \subseteq \Sigma R G \), for every generalized bi-hyperideal \(G \) and every right hyperideal \(R \) of \(S \);
(iii) \(R \cap B \subseteq \Sigma R B \), for every bi-hyperideal \(B \) and every right hyperideal \(R \) of \(S \);
(iv) \(R \cap Q \subseteq \Sigma R Q \), for every quasi-hyperideal \(Q \) and every right hyperideal \(R \) of \(S \).

Proof. (i) \(\Rightarrow \) (ii) Assume that \(S \) is intra-regular. Let \(G \) be a generalized bi-hyperideal and \(R \) be a right hyperideal of \(S \). Let \(a \in R \cap G \). Then, \(a \in \Sigma (S a^2)S \). Thus, by using left invertive law and Lemma 2.3, we have \(a \in \Sigma (S a^2)S = \Sigma (S(aa))S = \Sigma (a(aS))S = \Sigma (S(Sa))a \). Since \(S(Sa) = a(Sa) \), we have

\[a \in \Sigma (S(Sa))a = \Sigma (a(Sa))a \subseteq \Sigma (RS)G \subseteq \Sigma RG. \]

This implies that \(R \cap G \subseteq \Sigma R G \).

(ii) \(\Rightarrow \) (iii) Since every bi-hyperideal is a generalized bi-hyperideal of \(S \), it turns out that (iii) holds.

(iii) \(\Rightarrow \) (iv) By Lemma 2.11, we have that every quasi-hyperideal of \(S \) is a bi-hyperideal. So, (iv) holds.

(iv) \(\Rightarrow \) (v) Let \(L \) and \(R \) be a left hyperideal and a right hyperideal of \(S \), respectively. By Lemma 2.9, \(L \) is also a quasi-hyperideal of \(S \). By hypothesis, \(L \cap R \subseteq \Sigma RL \). Otherwise, \(\Sigma RL \subseteq L \cap R \). Hence, \(L \cap R = \Sigma RL \). Therefore, \(S \) is intra-regular by Theorem 3.9.

Theorem 3.13. Let \(S \) be a pure left invertible LA-semihyperring with a pure left identity \(e \) such that \(xS \subseteq xS \) for all \(x \in S \). Then the following statements are equivalent:

(i) \(S \) is intra-regular;
(ii) \(L \cap G \subseteq \Sigma LG \), for every generalized bi-hyperideal \(G \) and every left hyperideal \(L \) of \(S \);
(iii) \(L \cap B \subseteq \Sigma LB \), for every bi-hyperideal \(B \) and every left hyperideal \(L \) of \(S \);
(iv) \(L \cap Q \subseteq \Sigma LQ \), for every quasi-hyperideal \(Q \) and every left hyperideal \(L \) of \(S \).

Proof. (i) \(\Rightarrow \) (ii) Assume that \(S \) is intra-regular. Let \(L \) be a left hyperideal and \(G \) be a generalized bi-hyperideal of \(S \), and let \(a \in L \cap G \). Then, \(a \in \Sigma (S a^2)S \). Now, by using left invertive law and Lemma 2.3, we have

\[a \in \Sigma (S a^2)S = \Sigma (S(aa))S = \Sigma (a(aS))S = \Sigma (S(Sa))a \subseteq \Sigma (S(SL))G \subseteq \Sigma LG. \]

This implies that \(L \cap G \subseteq \Sigma LG \).

(ii) \(\Rightarrow \) (iii) Since every bi-hyperideal is a generalized bi-hyperideal of \(S \), it follows that (iii) holds.

(iii) \(\Rightarrow \) (iv) By Lemma 2.11, we have that every quasi-hyperideal of \(S \) is a bi-hyperideal. Hence, (iv) holds.

(iv) \(\Rightarrow \) (i) Let \(L \) be a left hyperideal and \(R \) be a right hyperideal of \(S \). By Lemma 2.9, \(R \) is also a quasi-hyperideal of \(S \). By assumption, \(L \cap R \subseteq \Sigma LR \). Therefore, \(S \) is intra-regular by Theorem 3.8.

Theorem 3.14. Let \(S \) be a pure left invertible LA-semihyperring with a pure left identity \(e \) such that \(xS \subseteq xS \) for all \(x \in S \). Then the following statements are equivalent:

(i) \(S \) is intra-regular;
(ii) \(L \cap G \subseteq \Sigma GL \), for every generalized bi-hyperideal \(G \) and every left hyperideal \(L \) of \(S \);
(iii) \(L \cap B \subseteq \Sigma BL \), for every bi-hyperideal \(B \) and every left hyperideal \(L \) of \(S \);
(iv) \(L \cap Q \subseteq \Sigma QL \), for every quasi-hyperideal \(Q \) and every left hyperideal \(L \) of \(S \).
Hence, \(L \cap G \subseteq \Sigma GL \).

(ii) \(\Rightarrow \) (iii) Since every bi-hyperideal of \(S \) is a generalized bi-hyperideal, it follows that (iii) holds.

(iii) \(\Rightarrow \) (iv) The implication holds from Lemma 2.11.

(iv) \(\Rightarrow \) (i) Let \(L \) and \(R \) be a left hyperideal and a right hyperideal of \(S \), respectively. By Lemma 2.9, \(R \) is also a quasi-hyperideal of \(S \). By the given assumption, we have \(L \cap R \subseteq \Sigma RL \). On the other hand, \(\Sigma RL \subseteq L \cap R \). Therefore, \(L \cap R = \Sigma RL \). By Theorem 3.9, we obtain that \(S \) is intra-regular. \(\square \)

Theorem 3.15. Let \(S \) be a pure left invertible LA-semihyperring with a pure left identity \(e \) such that \((xe)S \subseteq xS \) for all \(x \in S \). Then the following conditions are equivalent:

(i) \(S \) is intra-regular;

(ii) \(L \cap G \cap R \subseteq \Sigma (LG)R \), for every generalized bi-hyperideal \(G \), every left hyperideal \(L \) and every right hyperideal \(R \) of \(S \);

(iii) \(L \cap B \cap R \subseteq \Sigma (LB)R \), for every bi-hyperideal \(B \), every left hyperideal \(L \) and every right hyperideal \(R \) of \(S \);

(iv) \(L \cap Q \cap R \subseteq \Sigma (LQ)R \), for every quasi-hyperideal \(Q \), every left hyperideal \(L \) and every right hyperideal \(R \) of \(S \).

Proof. (i) \(\Rightarrow \) (ii) Assume that \(S \) is intra-regular. Let \(G \) be a generalized bi-hyperideal, \(L \) be a left hyperideal and \(R \) be a right hyperideal of \(S \), and let \(a \in L \cap G \cap R \). Then, \(a \in \Sigma (S a^2)S \). We note that \(S(Sa) = a(Sa) \). By using left invertive law, medial law, paramedial law and Lemma 2.3, we have

\[
a \in \Sigma (S a^2)S = \Sigma (a(Sa))S = \Sigma (S(Sa))a = (S(e)a)(ea) = (S(aa)(ea)
\]

Thus, by using left invertive law, medial law, paramedial law and Lemma 2.3, we have

\[
a \in \Sigma (S a^2)S = \Sigma (a(Sa))S = \Sigma (S(Sa))a = (S(e)a)(ea) = \Sigma (aa)((ae)S) \subseteq (LR)(RS)S \subseteq (LR)R.
\]

Hence, \(L \cap G \cap R \subseteq \Sigma (LG)R \).

(ii) \(\Rightarrow \) (iii) Since every bi-hyperideal is a generalized bi-hyperideal of \(S \), it follows that (iii) holds.

(iii) \(\Rightarrow \) (iv) By Lemma 2.11, we have that every quasi-hyperideal of \(S \) is a bi-hyperideal. Hence, (iv) holds.

(iv) \(\Rightarrow \) (i) Let \(L \) be a left hyperideal and \(R \) be a right hyperideal of \(S \). By Lemma 2.9, \(L \) is a quasi-hyperideal of \(S \). By assumption, \(L \cap R = L \cap L \cap R \subseteq \Sigma (LL)R \subseteq \Sigma (SL)R \subseteq SLR \). By Theorem 3.8, we obtain that \(S \) is intra-regular. \(\square \)

Theorem 3.16. Let \(S \) be a pure left invertible LA-semihyperring with a pure left identity \(e \) such that \((xe)S \subseteq xS \) for all \(x \in S \). Then the following statements are equivalent:

(i) \(S \) is intra-regular;

(ii) \(L \cap G \cap R \subseteq \Sigma (RG)L \), for every generalized bi-hyperideal \(G \), every left hyperideal \(L \) and every right hyperideal \(R \) of \(S \);
(iii) \(L \cap B \cap R \subseteq \Sigma(RB)L \), for every bi-hyperideal \(B \), every left hyperideal \(L \) and every right hyperideal \(R \) of \(S \);

(iv) \(L \cap Q \cap R \subseteq \Sigma(RQ)L \), for every quasi-hyperideal \(Q \), every left hyperideal \(L \) and every right hyperideal \(R \) of \(S \).

Proof. (i) \(\Rightarrow \) (ii) Assume that \(S \) is intra-regular. Let \(G \) be a generalized bi-hyperideal, \(L \) be a left hyperideal and \(R \) be a right hyperideal of \(S \). Let \(a \in L \cap G \cap R \). Then, \(a \in \Sigma(Sa^2)S \). Since \(S(Sa) \subseteq (\Sigma S (Sa))a \subseteq Sa \) and by Lemma 2.14, we have \(S(Sa) \subseteq (\Sigma S (Sa))a \subseteq (\Sigma S a) \subseteq (S a)a = (Sa)a \). By the given assumption, left invertive law, medial law, paramedial law and Lemma 2.3, we have

\[a \in (\Sigma(Sa^2))S = \Sigma(S(Sa))a = \Sigma((S(a)e)a) = \Sigma((ae)(aS)) = (\Sigma((RS)(S)G)L) \subseteq (\Sigma(RG)L). \]

This shows that, \(L \cap G \cap R \subseteq \Sigma(RG)L \).

(ii) \(\Rightarrow \) (iii) Since every bi-hyperideal of \(S \) is a generalized bi-hyperideal, which implies that (iii) holds.

(iii) \(\Rightarrow \) (iv) The proof follows from Lemma 2.11.

(iv) \(\Rightarrow \) (v) Let \(L \) be a left hyperideal and \(R \) be a right hyperideal of \(S \). Also, \(L \) is a quasi-hyperideal of \(S \) by Lemma 2.9. By assumption, we have that \(L \cap R = L \cap L \cap R \subseteq (\Sigma RL) \subseteq (\Sigma RS)L \subseteq \Sigma RL \).

Otherwise, \(\Sigma RL \subseteq L \cap R \). Hence, \(L \cap R = \Sigma RL \). Therefore, \(S \) is intra-regular by Theorem 3.9. \(\square \)

The following theorem, we can prove similarly.

Theorem 3.17. Let \(S \) be a pure left invertible LA-semihyperring with a pure left identity \(e \) such that \((xe)S \subseteq xS \) for all \(x \in S \). Then the following conditions are equivalent:

(i) \(S \) is intra-regular;

(ii) \(R \cap G \subseteq \Sigma(RG)R \), for every generalized bi-hyperideal \(G \) and every right hyperideal \(R \) of \(S \);

(iii) \(R \cap B \subseteq \Sigma(RB)R \), for every bi-hyperideal \(B \) every right hyperideal \(R \) of \(S \);

(iv) \(R \cap Q \subseteq \Sigma(RQ)R \), for every quasi-hyperideal \(Q \) and every right hyperideal \(R \) of \(S \).

4. Conclusions

In 2018, the concept of LA-semihyperrings was introduced by Nawaz et al. [33] as a generalization of LA-semirings. In Section 2, we have shown that some LA-semihyperring can be constructed from an ordered LA-semiring as shown in Lemma 2.6. This means that the LA-semihyperring is also a generalization of an ordered LA-semiring. In Section 3, we applied the concept of intra-regular LA-rings, appeared in [21], to define the concept of intra-regular LA-semihyperrings and discussed some of its properties. Finally, we characterized the class of intra-regular LA-semihyperrings by using (resp., left, right) hyperideals, quasi-hyperideals, bi-hyperideals and generalized bi-hyperideals of LA-semihyperrings were shown in Theorem 3.7 - Theorem 3.17. In our future study, we can consider the characterizations of the class of both regular and intra-regular LA-semihyperrings based on different types of hyperideals of LA-semihyperrings.
Acknowledgments (All sources of funding of the study must be disclosed)

This research was financially supported by Faculty of Science, Mahasarakham University (Grant year 2020).

Conflict of Interest

The author declares no conflict of interest.

References

For more questions regarding reference style, please refer to the Citing Medicine.

Supplementary (if necessary)

© 2021 W. Nakkhasen, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)